You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1087 lines
37 KiB

3 years ago
// Set implementation -*- C++ -*-
// Copyright (C) 2001-2021 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
/*
*
* Copyright (c) 1994
* Hewlett-Packard Company
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Hewlett-Packard Company makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*
*
* Copyright (c) 1996,1997
* Silicon Graphics Computer Systems, Inc.
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Silicon Graphics makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*/
/** @file bits/stl_set.h
* This is an internal header file, included by other library headers.
* Do not attempt to use it directly. @headername{set}
*/
#ifndef _STL_SET_H
#define _STL_SET_H 1
#include <bits/concept_check.h>
#if __cplusplus >= 201103L
#include <initializer_list>
#endif
namespace std _GLIBCXX_VISIBILITY(default)
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION
_GLIBCXX_BEGIN_NAMESPACE_CONTAINER
template<typename _Key, typename _Compare, typename _Alloc>
class multiset;
/**
* @brief A standard container made up of unique keys, which can be
* retrieved in logarithmic time.
*
* @ingroup associative_containers
*
* @tparam _Key Type of key objects.
* @tparam _Compare Comparison function object type, defaults to less<_Key>.
* @tparam _Alloc Allocator type, defaults to allocator<_Key>.
*
* Meets the requirements of a <a href="tables.html#65">container</a>, a
* <a href="tables.html#66">reversible container</a>, and an
* <a href="tables.html#69">associative container</a> (using unique keys).
*
* Sets support bidirectional iterators.
*
* The private tree data is declared exactly the same way for set and
* multiset; the distinction is made entirely in how the tree functions are
* called (*_unique versus *_equal, same as the standard).
*/
template<typename _Key, typename _Compare = std::less<_Key>,
typename _Alloc = std::allocator<_Key> >
class set
{
#ifdef _GLIBCXX_CONCEPT_CHECKS
// concept requirements
typedef typename _Alloc::value_type _Alloc_value_type;
# if __cplusplus < 201103L
__glibcxx_class_requires(_Key, _SGIAssignableConcept)
# endif
__glibcxx_class_requires4(_Compare, bool, _Key, _Key,
_BinaryFunctionConcept)
__glibcxx_class_requires2(_Key, _Alloc_value_type, _SameTypeConcept)
#endif
#if __cplusplus >= 201103L
static_assert(is_same<typename remove_cv<_Key>::type, _Key>::value,
"std::set must have a non-const, non-volatile value_type");
# if __cplusplus > 201703L || defined __STRICT_ANSI__
static_assert(is_same<typename _Alloc::value_type, _Key>::value,
"std::set must have the same value_type as its allocator");
# endif
#endif
public:
// typedefs:
///@{
/// Public typedefs.
typedef _Key key_type;
typedef _Key value_type;
typedef _Compare key_compare;
typedef _Compare value_compare;
typedef _Alloc allocator_type;
///@}
private:
typedef typename __gnu_cxx::__alloc_traits<_Alloc>::template
rebind<_Key>::other _Key_alloc_type;
typedef _Rb_tree<key_type, value_type, _Identity<value_type>,
key_compare, _Key_alloc_type> _Rep_type;
_Rep_type _M_t; // Red-black tree representing set.
typedef __gnu_cxx::__alloc_traits<_Key_alloc_type> _Alloc_traits;
public:
///@{
/// Iterator-related typedefs.
typedef typename _Alloc_traits::pointer pointer;
typedef typename _Alloc_traits::const_pointer const_pointer;
typedef typename _Alloc_traits::reference reference;
typedef typename _Alloc_traits::const_reference const_reference;
// _GLIBCXX_RESOLVE_LIB_DEFECTS
// DR 103. set::iterator is required to be modifiable,
// but this allows modification of keys.
typedef typename _Rep_type::const_iterator iterator;
typedef typename _Rep_type::const_iterator const_iterator;
typedef typename _Rep_type::const_reverse_iterator reverse_iterator;
typedef typename _Rep_type::const_reverse_iterator const_reverse_iterator;
typedef typename _Rep_type::size_type size_type;
typedef typename _Rep_type::difference_type difference_type;
///@}
#if __cplusplus > 201402L
using node_type = typename _Rep_type::node_type;
using insert_return_type = typename _Rep_type::insert_return_type;
#endif
// allocation/deallocation
/**
* @brief Default constructor creates no elements.
*/
#if __cplusplus < 201103L
set() : _M_t() { }
#else
set() = default;
#endif
/**
* @brief Creates a %set with no elements.
* @param __comp Comparator to use.
* @param __a An allocator object.
*/
explicit
set(const _Compare& __comp,
const allocator_type& __a = allocator_type())
: _M_t(__comp, _Key_alloc_type(__a)) { }
/**
* @brief Builds a %set from a range.
* @param __first An input iterator.
* @param __last An input iterator.
*
* Create a %set consisting of copies of the elements from
* [__first,__last). This is linear in N if the range is
* already sorted, and NlogN otherwise (where N is
* distance(__first,__last)).
*/
template<typename _InputIterator>
set(_InputIterator __first, _InputIterator __last)
: _M_t()
{ _M_t._M_insert_range_unique(__first, __last); }
/**
* @brief Builds a %set from a range.
* @param __first An input iterator.
* @param __last An input iterator.
* @param __comp A comparison functor.
* @param __a An allocator object.
*
* Create a %set consisting of copies of the elements from
* [__first,__last). This is linear in N if the range is
* already sorted, and NlogN otherwise (where N is
* distance(__first,__last)).
*/
template<typename _InputIterator>
set(_InputIterator __first, _InputIterator __last,
const _Compare& __comp,
const allocator_type& __a = allocator_type())
: _M_t(__comp, _Key_alloc_type(__a))
{ _M_t._M_insert_range_unique(__first, __last); }
/**
* @brief %Set copy constructor.
*
* Whether the allocator is copied depends on the allocator traits.
*/
#if __cplusplus < 201103L
set(const set& __x)
: _M_t(__x._M_t) { }
#else
set(const set&) = default;
/**
* @brief %Set move constructor
*
* The newly-created %set contains the exact contents of the moved
* instance. The moved instance is a valid, but unspecified, %set.
*/
set(set&&) = default;
/**
* @brief Builds a %set from an initializer_list.
* @param __l An initializer_list.
* @param __comp A comparison functor.
* @param __a An allocator object.
*
* Create a %set consisting of copies of the elements in the list.
* This is linear in N if the list is already sorted, and NlogN
* otherwise (where N is @a __l.size()).
*/
set(initializer_list<value_type> __l,
const _Compare& __comp = _Compare(),
const allocator_type& __a = allocator_type())
: _M_t(__comp, _Key_alloc_type(__a))
{ _M_t._M_insert_range_unique(__l.begin(), __l.end()); }
/// Allocator-extended default constructor.
explicit
set(const allocator_type& __a)
: _M_t(_Key_alloc_type(__a)) { }
/// Allocator-extended copy constructor.
set(const set& __x, const allocator_type& __a)
: _M_t(__x._M_t, _Key_alloc_type(__a)) { }
/// Allocator-extended move constructor.
set(set&& __x, const allocator_type& __a)
noexcept(is_nothrow_copy_constructible<_Compare>::value
&& _Alloc_traits::_S_always_equal())
: _M_t(std::move(__x._M_t), _Key_alloc_type(__a)) { }
/// Allocator-extended initialier-list constructor.
set(initializer_list<value_type> __l, const allocator_type& __a)
: _M_t(_Key_alloc_type(__a))
{ _M_t._M_insert_range_unique(__l.begin(), __l.end()); }
/// Allocator-extended range constructor.
template<typename _InputIterator>
set(_InputIterator __first, _InputIterator __last,
const allocator_type& __a)
: _M_t(_Key_alloc_type(__a))
{ _M_t._M_insert_range_unique(__first, __last); }
/**
* The dtor only erases the elements, and note that if the elements
* themselves are pointers, the pointed-to memory is not touched in any
* way. Managing the pointer is the user's responsibility.
*/
~set() = default;
#endif
/**
* @brief %Set assignment operator.
*
* Whether the allocator is copied depends on the allocator traits.
*/
#if __cplusplus < 201103L
set&
operator=(const set& __x)
{
_M_t = __x._M_t;
return *this;
}
#else
set&
operator=(const set&) = default;
/// Move assignment operator.
set&
operator=(set&&) = default;
/**
* @brief %Set list assignment operator.
* @param __l An initializer_list.
*
* This function fills a %set with copies of the elements in the
* initializer list @a __l.
*
* Note that the assignment completely changes the %set and
* that the resulting %set's size is the same as the number
* of elements assigned.
*/
set&
operator=(initializer_list<value_type> __l)
{
_M_t._M_assign_unique(__l.begin(), __l.end());
return *this;
}
#endif
// accessors:
/// Returns the comparison object with which the %set was constructed.
key_compare
key_comp() const
{ return _M_t.key_comp(); }
/// Returns the comparison object with which the %set was constructed.
value_compare
value_comp() const
{ return _M_t.key_comp(); }
/// Returns the allocator object with which the %set was constructed.
allocator_type
get_allocator() const _GLIBCXX_NOEXCEPT
{ return allocator_type(_M_t.get_allocator()); }
/**
* Returns a read-only (constant) iterator that points to the first
* element in the %set. Iteration is done in ascending order according
* to the keys.
*/
iterator
begin() const _GLIBCXX_NOEXCEPT
{ return _M_t.begin(); }
/**
* Returns a read-only (constant) iterator that points one past the last
* element in the %set. Iteration is done in ascending order according
* to the keys.
*/
iterator
end() const _GLIBCXX_NOEXCEPT
{ return _M_t.end(); }
/**
* Returns a read-only (constant) iterator that points to the last
* element in the %set. Iteration is done in descending order according
* to the keys.
*/
reverse_iterator
rbegin() const _GLIBCXX_NOEXCEPT
{ return _M_t.rbegin(); }
/**
* Returns a read-only (constant) reverse iterator that points to the
* last pair in the %set. Iteration is done in descending order
* according to the keys.
*/
reverse_iterator
rend() const _GLIBCXX_NOEXCEPT
{ return _M_t.rend(); }
#if __cplusplus >= 201103L
/**
* Returns a read-only (constant) iterator that points to the first
* element in the %set. Iteration is done in ascending order according
* to the keys.
*/
iterator
cbegin() const noexcept
{ return _M_t.begin(); }
/**
* Returns a read-only (constant) iterator that points one past the last
* element in the %set. Iteration is done in ascending order according
* to the keys.
*/
iterator
cend() const noexcept
{ return _M_t.end(); }
/**
* Returns a read-only (constant) iterator that points to the last
* element in the %set. Iteration is done in descending order according
* to the keys.
*/
reverse_iterator
crbegin() const noexcept
{ return _M_t.rbegin(); }
/**
* Returns a read-only (constant) reverse iterator that points to the
* last pair in the %set. Iteration is done in descending order
* according to the keys.
*/
reverse_iterator
crend() const noexcept
{ return _M_t.rend(); }
#endif
/// Returns true if the %set is empty.
_GLIBCXX_NODISCARD bool
empty() const _GLIBCXX_NOEXCEPT
{ return _M_t.empty(); }
/// Returns the size of the %set.
size_type
size() const _GLIBCXX_NOEXCEPT
{ return _M_t.size(); }
/// Returns the maximum size of the %set.
size_type
max_size() const _GLIBCXX_NOEXCEPT
{ return _M_t.max_size(); }
/**
* @brief Swaps data with another %set.
* @param __x A %set of the same element and allocator types.
*
* This exchanges the elements between two sets in constant
* time. (It is only swapping a pointer, an integer, and an
* instance of the @c Compare type (which itself is often
* stateless and empty), so it should be quite fast.) Note
* that the global std::swap() function is specialized such
* that std::swap(s1,s2) will feed to this function.
*
* Whether the allocators are swapped depends on the allocator traits.
*/
void
swap(set& __x)
_GLIBCXX_NOEXCEPT_IF(__is_nothrow_swappable<_Compare>::value)
{ _M_t.swap(__x._M_t); }
// insert/erase
#if __cplusplus >= 201103L
/**
* @brief Attempts to build and insert an element into the %set.
* @param __args Arguments used to generate an element.
* @return A pair, of which the first element is an iterator that points
* to the possibly inserted element, and the second is a bool
* that is true if the element was actually inserted.
*
* This function attempts to build and insert an element into the %set.
* A %set relies on unique keys and thus an element is only inserted if
* it is not already present in the %set.
*
* Insertion requires logarithmic time.
*/
template<typename... _Args>
std::pair<iterator, bool>
emplace(_Args&&... __args)
{ return _M_t._M_emplace_unique(std::forward<_Args>(__args)...); }
/**
* @brief Attempts to insert an element into the %set.
* @param __pos An iterator that serves as a hint as to where the
* element should be inserted.
* @param __args Arguments used to generate the element to be
* inserted.
* @return An iterator that points to the element with key equivalent to
* the one generated from @a __args (may or may not be the
* element itself).
*
* This function is not concerned about whether the insertion took place,
* and thus does not return a boolean like the single-argument emplace()
* does. Note that the first parameter is only a hint and can
* potentially improve the performance of the insertion process. A bad
* hint would cause no gains in efficiency.
*
* For more on @a hinting, see:
* https://gcc.gnu.org/onlinedocs/libstdc++/manual/associative.html#containers.associative.insert_hints
*
* Insertion requires logarithmic time (if the hint is not taken).
*/
template<typename... _Args>
iterator
emplace_hint(const_iterator __pos, _Args&&... __args)
{
return _M_t._M_emplace_hint_unique(__pos,
std::forward<_Args>(__args)...);
}
#endif
/**
* @brief Attempts to insert an element into the %set.
* @param __x Element to be inserted.
* @return A pair, of which the first element is an iterator that points
* to the possibly inserted element, and the second is a bool
* that is true if the element was actually inserted.
*
* This function attempts to insert an element into the %set. A %set
* relies on unique keys and thus an element is only inserted if it is
* not already present in the %set.
*
* Insertion requires logarithmic time.
*/
std::pair<iterator, bool>
insert(const value_type& __x)
{
std::pair<typename _Rep_type::iterator, bool> __p =
_M_t._M_insert_unique(__x);
return std::pair<iterator, bool>(__p.first, __p.second);
}
#if __cplusplus >= 201103L
std::pair<iterator, bool>
insert(value_type&& __x)
{
std::pair<typename _Rep_type::iterator, bool> __p =
_M_t._M_insert_unique(std::move(__x));
return std::pair<iterator, bool>(__p.first, __p.second);
}
#endif
/**
* @brief Attempts to insert an element into the %set.
* @param __position An iterator that serves as a hint as to where the
* element should be inserted.
* @param __x Element to be inserted.
* @return An iterator that points to the element with key of
* @a __x (may or may not be the element passed in).
*
* This function is not concerned about whether the insertion took place,
* and thus does not return a boolean like the single-argument insert()
* does. Note that the first parameter is only a hint and can
* potentially improve the performance of the insertion process. A bad
* hint would cause no gains in efficiency.
*
* For more on @a hinting, see:
* https://gcc.gnu.org/onlinedocs/libstdc++/manual/associative.html#containers.associative.insert_hints
*
* Insertion requires logarithmic time (if the hint is not taken).
*/
iterator
insert(const_iterator __position, const value_type& __x)
{ return _M_t._M_insert_unique_(__position, __x); }
#if __cplusplus >= 201103L
iterator
insert(const_iterator __position, value_type&& __x)
{ return _M_t._M_insert_unique_(__position, std::move(__x)); }
#endif
/**
* @brief A template function that attempts to insert a range
* of elements.
* @param __first Iterator pointing to the start of the range to be
* inserted.
* @param __last Iterator pointing to the end of the range.
*
* Complexity similar to that of the range constructor.
*/
template<typename _InputIterator>
void
insert(_InputIterator __first, _InputIterator __last)
{ _M_t._M_insert_range_unique(__first, __last); }
#if __cplusplus >= 201103L
/**
* @brief Attempts to insert a list of elements into the %set.
* @param __l A std::initializer_list<value_type> of elements
* to be inserted.
*
* Complexity similar to that of the range constructor.
*/
void
insert(initializer_list<value_type> __l)
{ this->insert(__l.begin(), __l.end()); }
#endif
#if __cplusplus > 201402L
/// Extract a node.
node_type
extract(const_iterator __pos)
{
__glibcxx_assert(__pos != end());
return _M_t.extract(__pos);
}
/// Extract a node.
node_type
extract(const key_type& __x)
{ return _M_t.extract(__x); }
/// Re-insert an extracted node.
insert_return_type
insert(node_type&& __nh)
{ return _M_t._M_reinsert_node_unique(std::move(__nh)); }
/// Re-insert an extracted node.
iterator
insert(const_iterator __hint, node_type&& __nh)
{ return _M_t._M_reinsert_node_hint_unique(__hint, std::move(__nh)); }
template<typename, typename>
friend struct std::_Rb_tree_merge_helper;
template<typename _Compare1>
void
merge(set<_Key, _Compare1, _Alloc>& __source)
{
using _Merge_helper = _Rb_tree_merge_helper<set, _Compare1>;
_M_t._M_merge_unique(_Merge_helper::_S_get_tree(__source));
}
template<typename _Compare1>
void
merge(set<_Key, _Compare1, _Alloc>&& __source)
{ merge(__source); }
template<typename _Compare1>
void
merge(multiset<_Key, _Compare1, _Alloc>& __source)
{
using _Merge_helper = _Rb_tree_merge_helper<set, _Compare1>;
_M_t._M_merge_unique(_Merge_helper::_S_get_tree(__source));
}
template<typename _Compare1>
void
merge(multiset<_Key, _Compare1, _Alloc>&& __source)
{ merge(__source); }
#endif // C++17
#if __cplusplus >= 201103L
// _GLIBCXX_RESOLVE_LIB_DEFECTS
// DR 130. Associative erase should return an iterator.
/**
* @brief Erases an element from a %set.
* @param __position An iterator pointing to the element to be erased.
* @return An iterator pointing to the element immediately following
* @a __position prior to the element being erased. If no such
* element exists, end() is returned.
*
* This function erases an element, pointed to by the given iterator,
* from a %set. Note that this function only erases the element, and
* that if the element is itself a pointer, the pointed-to memory is not
* touched in any way. Managing the pointer is the user's
* responsibility.
*/
_GLIBCXX_ABI_TAG_CXX11
iterator
erase(const_iterator __position)
{ return _M_t.erase(__position); }
#else
/**
* @brief Erases an element from a %set.
* @param position An iterator pointing to the element to be erased.
*
* This function erases an element, pointed to by the given iterator,
* from a %set. Note that this function only erases the element, and
* that if the element is itself a pointer, the pointed-to memory is not
* touched in any way. Managing the pointer is the user's
* responsibility.
*/
void
erase(iterator __position)
{ _M_t.erase(__position); }
#endif
/**
* @brief Erases elements according to the provided key.
* @param __x Key of element to be erased.
* @return The number of elements erased.
*
* This function erases all the elements located by the given key from
* a %set.
* Note that this function only erases the element, and that if
* the element is itself a pointer, the pointed-to memory is not touched
* in any way. Managing the pointer is the user's responsibility.
*/
size_type
erase(const key_type& __x)
{ return _M_t.erase(__x); }
#if __cplusplus >= 201103L
// _GLIBCXX_RESOLVE_LIB_DEFECTS
// DR 130. Associative erase should return an iterator.
/**
* @brief Erases a [__first,__last) range of elements from a %set.
* @param __first Iterator pointing to the start of the range to be
* erased.
* @param __last Iterator pointing to the end of the range to
* be erased.
* @return The iterator @a __last.
*
* This function erases a sequence of elements from a %set.
* Note that this function only erases the element, and that if
* the element is itself a pointer, the pointed-to memory is not touched
* in any way. Managing the pointer is the user's responsibility.
*/
_GLIBCXX_ABI_TAG_CXX11
iterator
erase(const_iterator __first, const_iterator __last)
{ return _M_t.erase(__first, __last); }
#else
/**
* @brief Erases a [first,last) range of elements from a %set.
* @param __first Iterator pointing to the start of the range to be
* erased.
* @param __last Iterator pointing to the end of the range to
* be erased.
*
* This function erases a sequence of elements from a %set.
* Note that this function only erases the element, and that if
* the element is itself a pointer, the pointed-to memory is not touched
* in any way. Managing the pointer is the user's responsibility.
*/
void
erase(iterator __first, iterator __last)
{ _M_t.erase(__first, __last); }
#endif
/**
* Erases all elements in a %set. Note that this function only erases
* the elements, and that if the elements themselves are pointers, the
* pointed-to memory is not touched in any way. Managing the pointer is
* the user's responsibility.
*/
void
clear() _GLIBCXX_NOEXCEPT
{ _M_t.clear(); }
// set operations:
///@{
/**
* @brief Finds the number of elements.
* @param __x Element to located.
* @return Number of elements with specified key.
*
* This function only makes sense for multisets; for set the result will
* either be 0 (not present) or 1 (present).
*/
size_type
count(const key_type& __x) const
{ return _M_t.find(__x) == _M_t.end() ? 0 : 1; }
#if __cplusplus > 201103L
template<typename _Kt>
auto
count(const _Kt& __x) const
-> decltype(_M_t._M_count_tr(__x))
{ return _M_t._M_count_tr(__x); }
#endif
///@}
#if __cplusplus > 201703L
///@{
/**
* @brief Finds whether an element with the given key exists.
* @param __x Key of elements to be located.
* @return True if there is an element with the specified key.
*/
bool
contains(const key_type& __x) const
{ return _M_t.find(__x) != _M_t.end(); }
template<typename _Kt>
auto
contains(const _Kt& __x) const
-> decltype(_M_t._M_find_tr(__x), void(), true)
{ return _M_t._M_find_tr(__x) != _M_t.end(); }
///@}
#endif
// _GLIBCXX_RESOLVE_LIB_DEFECTS
// 214. set::find() missing const overload
///@{
/**
* @brief Tries to locate an element in a %set.
* @param __x Element to be located.
* @return Iterator pointing to sought-after element, or end() if not
* found.
*
* This function takes a key and tries to locate the element with which
* the key matches. If successful the function returns an iterator
* pointing to the sought after element. If unsuccessful it returns the
* past-the-end ( @c end() ) iterator.
*/
iterator
find(const key_type& __x)
{ return _M_t.find(__x); }
const_iterator
find(const key_type& __x) const
{ return _M_t.find(__x); }
#if __cplusplus > 201103L
template<typename _Kt>
auto
find(const _Kt& __x)
-> decltype(iterator{_M_t._M_find_tr(__x)})
{ return iterator{_M_t._M_find_tr(__x)}; }
template<typename _Kt>
auto
find(const _Kt& __x) const
-> decltype(const_iterator{_M_t._M_find_tr(__x)})
{ return const_iterator{_M_t._M_find_tr(__x)}; }
#endif
///@}
///@{
/**
* @brief Finds the beginning of a subsequence matching given key.
* @param __x Key to be located.
* @return Iterator pointing to first element equal to or greater
* than key, or end().
*
* This function returns the first element of a subsequence of elements
* that matches the given key. If unsuccessful it returns an iterator
* pointing to the first element that has a greater value than given key
* or end() if no such element exists.
*/
iterator
lower_bound(const key_type& __x)
{ return _M_t.lower_bound(__x); }
const_iterator
lower_bound(const key_type& __x) const
{ return _M_t.lower_bound(__x); }
#if __cplusplus > 201103L
template<typename _Kt>
auto
lower_bound(const _Kt& __x)
-> decltype(iterator(_M_t._M_lower_bound_tr(__x)))
{ return iterator(_M_t._M_lower_bound_tr(__x)); }
template<typename _Kt>
auto
lower_bound(const _Kt& __x) const
-> decltype(const_iterator(_M_t._M_lower_bound_tr(__x)))
{ return const_iterator(_M_t._M_lower_bound_tr(__x)); }
#endif
///@}
///@{
/**
* @brief Finds the end of a subsequence matching given key.
* @param __x Key to be located.
* @return Iterator pointing to the first element
* greater than key, or end().
*/
iterator
upper_bound(const key_type& __x)
{ return _M_t.upper_bound(__x); }
const_iterator
upper_bound(const key_type& __x) const
{ return _M_t.upper_bound(__x); }
#if __cplusplus > 201103L
template<typename _Kt>
auto
upper_bound(const _Kt& __x)
-> decltype(iterator(_M_t._M_upper_bound_tr(__x)))
{ return iterator(_M_t._M_upper_bound_tr(__x)); }
template<typename _Kt>
auto
upper_bound(const _Kt& __x) const
-> decltype(iterator(_M_t._M_upper_bound_tr(__x)))
{ return const_iterator(_M_t._M_upper_bound_tr(__x)); }
#endif
///@}
///@{
/**
* @brief Finds a subsequence matching given key.
* @param __x Key to be located.
* @return Pair of iterators that possibly points to the subsequence
* matching given key.
*
* This function is equivalent to
* @code
* std::make_pair(c.lower_bound(val),
* c.upper_bound(val))
* @endcode
* (but is faster than making the calls separately).
*
* This function probably only makes sense for multisets.
*/
std::pair<iterator, iterator>
equal_range(const key_type& __x)
{ return _M_t.equal_range(__x); }
std::pair<const_iterator, const_iterator>
equal_range(const key_type& __x) const
{ return _M_t.equal_range(__x); }
#if __cplusplus > 201103L
template<typename _Kt>
auto
equal_range(const _Kt& __x)
-> decltype(pair<iterator, iterator>(_M_t._M_equal_range_tr(__x)))
{ return pair<iterator, iterator>(_M_t._M_equal_range_tr(__x)); }
template<typename _Kt>
auto
equal_range(const _Kt& __x) const
-> decltype(pair<iterator, iterator>(_M_t._M_equal_range_tr(__x)))
{ return pair<iterator, iterator>(_M_t._M_equal_range_tr(__x)); }
#endif
///@}
template<typename _K1, typename _C1, typename _A1>
friend bool
operator==(const set<_K1, _C1, _A1>&, const set<_K1, _C1, _A1>&);
#if __cpp_lib_three_way_comparison
template<typename _K1, typename _C1, typename _A1>
friend __detail::__synth3way_t<_K1>
operator<=>(const set<_K1, _C1, _A1>&, const set<_K1, _C1, _A1>&);
#else
template<typename _K1, typename _C1, typename _A1>
friend bool
operator<(const set<_K1, _C1, _A1>&, const set<_K1, _C1, _A1>&);
#endif
};
#if __cpp_deduction_guides >= 201606
template<typename _InputIterator,
typename _Compare =
less<typename iterator_traits<_InputIterator>::value_type>,
typename _Allocator =
allocator<typename iterator_traits<_InputIterator>::value_type>,
typename = _RequireInputIter<_InputIterator>,
typename = _RequireNotAllocator<_Compare>,
typename = _RequireAllocator<_Allocator>>
set(_InputIterator, _InputIterator,
_Compare = _Compare(), _Allocator = _Allocator())
-> set<typename iterator_traits<_InputIterator>::value_type,
_Compare, _Allocator>;
template<typename _Key, typename _Compare = less<_Key>,
typename _Allocator = allocator<_Key>,
typename = _RequireNotAllocator<_Compare>,
typename = _RequireAllocator<_Allocator>>
set(initializer_list<_Key>,
_Compare = _Compare(), _Allocator = _Allocator())
-> set<_Key, _Compare, _Allocator>;
template<typename _InputIterator, typename _Allocator,
typename = _RequireInputIter<_InputIterator>,
typename = _RequireAllocator<_Allocator>>
set(_InputIterator, _InputIterator, _Allocator)
-> set<typename iterator_traits<_InputIterator>::value_type,
less<typename iterator_traits<_InputIterator>::value_type>,
_Allocator>;
template<typename _Key, typename _Allocator,
typename = _RequireAllocator<_Allocator>>
set(initializer_list<_Key>, _Allocator)
-> set<_Key, less<_Key>, _Allocator>;
#endif // deduction guides
/**
* @brief Set equality comparison.
* @param __x A %set.
* @param __y A %set of the same type as @a x.
* @return True iff the size and elements of the sets are equal.
*
* This is an equivalence relation. It is linear in the size of the sets.
* Sets are considered equivalent if their sizes are equal, and if
* corresponding elements compare equal.
*/
template<typename _Key, typename _Compare, typename _Alloc>
inline bool
operator==(const set<_Key, _Compare, _Alloc>& __x,
const set<_Key, _Compare, _Alloc>& __y)
{ return __x._M_t == __y._M_t; }
#if __cpp_lib_three_way_comparison
/**
* @brief Set ordering relation.
* @param __x A `set`.
* @param __y A `set` of the same type as `x`.
* @return A value indicating whether `__x` is less than, equal to,
* greater than, or incomparable with `__y`.
*
* This is a total ordering relation. It is linear in the size of the
* maps. The elements must be comparable with @c <.
*
* See `std::lexicographical_compare_three_way()` for how the determination
* is made. This operator is used to synthesize relational operators like
* `<` and `>=` etc.
*/
template<typename _Key, typename _Compare, typename _Alloc>
inline __detail::__synth3way_t<_Key>
operator<=>(const set<_Key, _Compare, _Alloc>& __x,
const set<_Key, _Compare, _Alloc>& __y)
{ return __x._M_t <=> __y._M_t; }
#else
/**
* @brief Set ordering relation.
* @param __x A %set.
* @param __y A %set of the same type as @a x.
* @return True iff @a __x is lexicographically less than @a __y.
*
* This is a total ordering relation. It is linear in the size of the
* sets. The elements must be comparable with @c <.
*
* See std::lexicographical_compare() for how the determination is made.
*/
template<typename _Key, typename _Compare, typename _Alloc>
inline bool
operator<(const set<_Key, _Compare, _Alloc>& __x,
const set<_Key, _Compare, _Alloc>& __y)
{ return __x._M_t < __y._M_t; }
/// Returns !(x == y).
template<typename _Key, typename _Compare, typename _Alloc>
inline bool
operator!=(const set<_Key, _Compare, _Alloc>& __x,
const set<_Key, _Compare, _Alloc>& __y)
{ return !(__x == __y); }
/// Returns y < x.
template<typename _Key, typename _Compare, typename _Alloc>
inline bool
operator>(const set<_Key, _Compare, _Alloc>& __x,
const set<_Key, _Compare, _Alloc>& __y)
{ return __y < __x; }
/// Returns !(y < x)
template<typename _Key, typename _Compare, typename _Alloc>
inline bool
operator<=(const set<_Key, _Compare, _Alloc>& __x,
const set<_Key, _Compare, _Alloc>& __y)
{ return !(__y < __x); }
/// Returns !(x < y)
template<typename _Key, typename _Compare, typename _Alloc>
inline bool
operator>=(const set<_Key, _Compare, _Alloc>& __x,
const set<_Key, _Compare, _Alloc>& __y)
{ return !(__x < __y); }
#endif // three-way comparison
/// See std::set::swap().
template<typename _Key, typename _Compare, typename _Alloc>
inline void
swap(set<_Key, _Compare, _Alloc>& __x, set<_Key, _Compare, _Alloc>& __y)
_GLIBCXX_NOEXCEPT_IF(noexcept(__x.swap(__y)))
{ __x.swap(__y); }
_GLIBCXX_END_NAMESPACE_CONTAINER
#if __cplusplus > 201402L
// Allow std::set access to internals of compatible sets.
template<typename _Val, typename _Cmp1, typename _Alloc, typename _Cmp2>
struct
_Rb_tree_merge_helper<_GLIBCXX_STD_C::set<_Val, _Cmp1, _Alloc>, _Cmp2>
{
private:
friend class _GLIBCXX_STD_C::set<_Val, _Cmp1, _Alloc>;
static auto&
_S_get_tree(_GLIBCXX_STD_C::set<_Val, _Cmp2, _Alloc>& __set)
{ return __set._M_t; }
static auto&
_S_get_tree(_GLIBCXX_STD_C::multiset<_Val, _Cmp2, _Alloc>& __set)
{ return __set._M_t; }
};
#endif // C++17
_GLIBCXX_END_NAMESPACE_VERSION
} //namespace std
#endif /* _STL_SET_H */