You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2615 lines
72 KiB

3 years ago
// RB tree implementation -*- C++ -*-
// Copyright (C) 2001-2021 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
/*
*
* Copyright (c) 1996,1997
* Silicon Graphics Computer Systems, Inc.
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Silicon Graphics makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*
*
* Copyright (c) 1994
* Hewlett-Packard Company
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Hewlett-Packard Company makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*
*
*/
/** @file bits/stl_tree.h
* This is an internal header file, included by other library headers.
* Do not attempt to use it directly. @headername{map,set}
*/
#ifndef _STL_TREE_H
#define _STL_TREE_H 1
#pragma GCC system_header
#include <bits/stl_algobase.h>
#include <bits/allocator.h>
#include <bits/stl_function.h>
#include <bits/cpp_type_traits.h>
#include <ext/alloc_traits.h>
#if __cplusplus >= 201103L
# include <ext/aligned_buffer.h>
#endif
#if __cplusplus > 201402L
# include <bits/node_handle.h>
#endif
namespace std _GLIBCXX_VISIBILITY(default)
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION
#if __cplusplus > 201103L
# define __cpp_lib_generic_associative_lookup 201304
#endif
// Red-black tree class, designed for use in implementing STL
// associative containers (set, multiset, map, and multimap). The
// insertion and deletion algorithms are based on those in Cormen,
// Leiserson, and Rivest, Introduction to Algorithms (MIT Press,
// 1990), except that
//
// (1) the header cell is maintained with links not only to the root
// but also to the leftmost node of the tree, to enable constant
// time begin(), and to the rightmost node of the tree, to enable
// linear time performance when used with the generic set algorithms
// (set_union, etc.)
//
// (2) when a node being deleted has two children its successor node
// is relinked into its place, rather than copied, so that the only
// iterators invalidated are those referring to the deleted node.
enum _Rb_tree_color { _S_red = false, _S_black = true };
struct _Rb_tree_node_base
{
typedef _Rb_tree_node_base* _Base_ptr;
typedef const _Rb_tree_node_base* _Const_Base_ptr;
_Rb_tree_color _M_color;
_Base_ptr _M_parent;
_Base_ptr _M_left;
_Base_ptr _M_right;
static _Base_ptr
_S_minimum(_Base_ptr __x) _GLIBCXX_NOEXCEPT
{
while (__x->_M_left != 0) __x = __x->_M_left;
return __x;
}
static _Const_Base_ptr
_S_minimum(_Const_Base_ptr __x) _GLIBCXX_NOEXCEPT
{
while (__x->_M_left != 0) __x = __x->_M_left;
return __x;
}
static _Base_ptr
_S_maximum(_Base_ptr __x) _GLIBCXX_NOEXCEPT
{
while (__x->_M_right != 0) __x = __x->_M_right;
return __x;
}
static _Const_Base_ptr
_S_maximum(_Const_Base_ptr __x) _GLIBCXX_NOEXCEPT
{
while (__x->_M_right != 0) __x = __x->_M_right;
return __x;
}
};
// Helper type offering value initialization guarantee on the compare functor.
template<typename _Key_compare>
struct _Rb_tree_key_compare
{
_Key_compare _M_key_compare;
_Rb_tree_key_compare()
_GLIBCXX_NOEXCEPT_IF(
is_nothrow_default_constructible<_Key_compare>::value)
: _M_key_compare()
{ }
_Rb_tree_key_compare(const _Key_compare& __comp)
: _M_key_compare(__comp)
{ }
#if __cplusplus >= 201103L
// Copy constructor added for consistency with C++98 mode.
_Rb_tree_key_compare(const _Rb_tree_key_compare&) = default;
_Rb_tree_key_compare(_Rb_tree_key_compare&& __x)
noexcept(is_nothrow_copy_constructible<_Key_compare>::value)
: _M_key_compare(__x._M_key_compare)
{ }
#endif
};
// Helper type to manage default initialization of node count and header.
struct _Rb_tree_header
{
_Rb_tree_node_base _M_header;
size_t _M_node_count; // Keeps track of size of tree.
_Rb_tree_header() _GLIBCXX_NOEXCEPT
{
_M_header._M_color = _S_red;
_M_reset();
}
#if __cplusplus >= 201103L
_Rb_tree_header(_Rb_tree_header&& __x) noexcept
{
if (__x._M_header._M_parent != nullptr)
_M_move_data(__x);
else
{
_M_header._M_color = _S_red;
_M_reset();
}
}
#endif
void
_M_move_data(_Rb_tree_header& __from)
{
_M_header._M_color = __from._M_header._M_color;
_M_header._M_parent = __from._M_header._M_parent;
_M_header._M_left = __from._M_header._M_left;
_M_header._M_right = __from._M_header._M_right;
_M_header._M_parent->_M_parent = &_M_header;
_M_node_count = __from._M_node_count;
__from._M_reset();
}
void
_M_reset()
{
_M_header._M_parent = 0;
_M_header._M_left = &_M_header;
_M_header._M_right = &_M_header;
_M_node_count = 0;
}
};
template<typename _Val>
struct _Rb_tree_node : public _Rb_tree_node_base
{
typedef _Rb_tree_node<_Val>* _Link_type;
#if __cplusplus < 201103L
_Val _M_value_field;
_Val*
_M_valptr()
{ return std::__addressof(_M_value_field); }
const _Val*
_M_valptr() const
{ return std::__addressof(_M_value_field); }
#else
__gnu_cxx::__aligned_membuf<_Val> _M_storage;
_Val*
_M_valptr()
{ return _M_storage._M_ptr(); }
const _Val*
_M_valptr() const
{ return _M_storage._M_ptr(); }
#endif
};
_GLIBCXX_PURE _Rb_tree_node_base*
_Rb_tree_increment(_Rb_tree_node_base* __x) throw ();
_GLIBCXX_PURE const _Rb_tree_node_base*
_Rb_tree_increment(const _Rb_tree_node_base* __x) throw ();
_GLIBCXX_PURE _Rb_tree_node_base*
_Rb_tree_decrement(_Rb_tree_node_base* __x) throw ();
_GLIBCXX_PURE const _Rb_tree_node_base*
_Rb_tree_decrement(const _Rb_tree_node_base* __x) throw ();
template<typename _Tp>
struct _Rb_tree_iterator
{
typedef _Tp value_type;
typedef _Tp& reference;
typedef _Tp* pointer;
typedef bidirectional_iterator_tag iterator_category;
typedef ptrdiff_t difference_type;
typedef _Rb_tree_iterator<_Tp> _Self;
typedef _Rb_tree_node_base::_Base_ptr _Base_ptr;
typedef _Rb_tree_node<_Tp>* _Link_type;
_Rb_tree_iterator() _GLIBCXX_NOEXCEPT
: _M_node() { }
explicit
_Rb_tree_iterator(_Base_ptr __x) _GLIBCXX_NOEXCEPT
: _M_node(__x) { }
reference
operator*() const _GLIBCXX_NOEXCEPT
{ return *static_cast<_Link_type>(_M_node)->_M_valptr(); }
pointer
operator->() const _GLIBCXX_NOEXCEPT
{ return static_cast<_Link_type> (_M_node)->_M_valptr(); }
_Self&
operator++() _GLIBCXX_NOEXCEPT
{
_M_node = _Rb_tree_increment(_M_node);
return *this;
}
_Self
operator++(int) _GLIBCXX_NOEXCEPT
{
_Self __tmp = *this;
_M_node = _Rb_tree_increment(_M_node);
return __tmp;
}
_Self&
operator--() _GLIBCXX_NOEXCEPT
{
_M_node = _Rb_tree_decrement(_M_node);
return *this;
}
_Self
operator--(int) _GLIBCXX_NOEXCEPT
{
_Self __tmp = *this;
_M_node = _Rb_tree_decrement(_M_node);
return __tmp;
}
friend bool
operator==(const _Self& __x, const _Self& __y) _GLIBCXX_NOEXCEPT
{ return __x._M_node == __y._M_node; }
#if ! __cpp_lib_three_way_comparison
friend bool
operator!=(const _Self& __x, const _Self& __y) _GLIBCXX_NOEXCEPT
{ return __x._M_node != __y._M_node; }
#endif
_Base_ptr _M_node;
};
template<typename _Tp>
struct _Rb_tree_const_iterator
{
typedef _Tp value_type;
typedef const _Tp& reference;
typedef const _Tp* pointer;
typedef _Rb_tree_iterator<_Tp> iterator;
typedef bidirectional_iterator_tag iterator_category;
typedef ptrdiff_t difference_type;
typedef _Rb_tree_const_iterator<_Tp> _Self;
typedef _Rb_tree_node_base::_Const_Base_ptr _Base_ptr;
typedef const _Rb_tree_node<_Tp>* _Link_type;
_Rb_tree_const_iterator() _GLIBCXX_NOEXCEPT
: _M_node() { }
explicit
_Rb_tree_const_iterator(_Base_ptr __x) _GLIBCXX_NOEXCEPT
: _M_node(__x) { }
_Rb_tree_const_iterator(const iterator& __it) _GLIBCXX_NOEXCEPT
: _M_node(__it._M_node) { }
iterator
_M_const_cast() const _GLIBCXX_NOEXCEPT
{ return iterator(const_cast<typename iterator::_Base_ptr>(_M_node)); }
reference
operator*() const _GLIBCXX_NOEXCEPT
{ return *static_cast<_Link_type>(_M_node)->_M_valptr(); }
pointer
operator->() const _GLIBCXX_NOEXCEPT
{ return static_cast<_Link_type>(_M_node)->_M_valptr(); }
_Self&
operator++() _GLIBCXX_NOEXCEPT
{
_M_node = _Rb_tree_increment(_M_node);
return *this;
}
_Self
operator++(int) _GLIBCXX_NOEXCEPT
{
_Self __tmp = *this;
_M_node = _Rb_tree_increment(_M_node);
return __tmp;
}
_Self&
operator--() _GLIBCXX_NOEXCEPT
{
_M_node = _Rb_tree_decrement(_M_node);
return *this;
}
_Self
operator--(int) _GLIBCXX_NOEXCEPT
{
_Self __tmp = *this;
_M_node = _Rb_tree_decrement(_M_node);
return __tmp;
}
friend bool
operator==(const _Self& __x, const _Self& __y) _GLIBCXX_NOEXCEPT
{ return __x._M_node == __y._M_node; }
#if ! __cpp_lib_three_way_comparison
friend bool
operator!=(const _Self& __x, const _Self& __y) _GLIBCXX_NOEXCEPT
{ return __x._M_node != __y._M_node; }
#endif
_Base_ptr _M_node;
};
void
_Rb_tree_insert_and_rebalance(const bool __insert_left,
_Rb_tree_node_base* __x,
_Rb_tree_node_base* __p,
_Rb_tree_node_base& __header) throw ();
_Rb_tree_node_base*
_Rb_tree_rebalance_for_erase(_Rb_tree_node_base* const __z,
_Rb_tree_node_base& __header) throw ();
#if __cplusplus > 201402L
template<typename _Tree1, typename _Cmp2>
struct _Rb_tree_merge_helper { };
#endif
template<typename _Key, typename _Val, typename _KeyOfValue,
typename _Compare, typename _Alloc = allocator<_Val> >
class _Rb_tree
{
typedef typename __gnu_cxx::__alloc_traits<_Alloc>::template
rebind<_Rb_tree_node<_Val> >::other _Node_allocator;
typedef __gnu_cxx::__alloc_traits<_Node_allocator> _Alloc_traits;
protected:
typedef _Rb_tree_node_base* _Base_ptr;
typedef const _Rb_tree_node_base* _Const_Base_ptr;
typedef _Rb_tree_node<_Val>* _Link_type;
typedef const _Rb_tree_node<_Val>* _Const_Link_type;
private:
// Functor recycling a pool of nodes and using allocation once the pool
// is empty.
struct _Reuse_or_alloc_node
{
_Reuse_or_alloc_node(_Rb_tree& __t)
: _M_root(__t._M_root()), _M_nodes(__t._M_rightmost()), _M_t(__t)
{
if (_M_root)
{
_M_root->_M_parent = 0;
if (_M_nodes->_M_left)
_M_nodes = _M_nodes->_M_left;
}
else
_M_nodes = 0;
}
#if __cplusplus >= 201103L
_Reuse_or_alloc_node(const _Reuse_or_alloc_node&) = delete;
#endif
~_Reuse_or_alloc_node()
{ _M_t._M_erase(static_cast<_Link_type>(_M_root)); }
template<typename _Arg>
_Link_type
operator()(_GLIBCXX_FWDREF(_Arg) __arg)
{
_Link_type __node = static_cast<_Link_type>(_M_extract());
if (__node)
{
_M_t._M_destroy_node(__node);
_M_t._M_construct_node(__node, _GLIBCXX_FORWARD(_Arg, __arg));
return __node;
}
return _M_t._M_create_node(_GLIBCXX_FORWARD(_Arg, __arg));
}
private:
_Base_ptr
_M_extract()
{
if (!_M_nodes)
return _M_nodes;
_Base_ptr __node = _M_nodes;
_M_nodes = _M_nodes->_M_parent;
if (_M_nodes)
{
if (_M_nodes->_M_right == __node)
{
_M_nodes->_M_right = 0;
if (_M_nodes->_M_left)
{
_M_nodes = _M_nodes->_M_left;
while (_M_nodes->_M_right)
_M_nodes = _M_nodes->_M_right;
if (_M_nodes->_M_left)
_M_nodes = _M_nodes->_M_left;
}
}
else // __node is on the left.
_M_nodes->_M_left = 0;
}
else
_M_root = 0;
return __node;
}
_Base_ptr _M_root;
_Base_ptr _M_nodes;
_Rb_tree& _M_t;
};
// Functor similar to the previous one but without any pool of nodes to
// recycle.
struct _Alloc_node
{
_Alloc_node(_Rb_tree& __t)
: _M_t(__t) { }
template<typename _Arg>
_Link_type
operator()(_GLIBCXX_FWDREF(_Arg) __arg) const
{ return _M_t._M_create_node(_GLIBCXX_FORWARD(_Arg, __arg)); }
private:
_Rb_tree& _M_t;
};
public:
typedef _Key key_type;
typedef _Val value_type;
typedef value_type* pointer;
typedef const value_type* const_pointer;
typedef value_type& reference;
typedef const value_type& const_reference;
typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef _Alloc allocator_type;
_Node_allocator&
_M_get_Node_allocator() _GLIBCXX_NOEXCEPT
{ return this->_M_impl; }
const _Node_allocator&
_M_get_Node_allocator() const _GLIBCXX_NOEXCEPT
{ return this->_M_impl; }
allocator_type
get_allocator() const _GLIBCXX_NOEXCEPT
{ return allocator_type(_M_get_Node_allocator()); }
protected:
_Link_type
_M_get_node()
{ return _Alloc_traits::allocate(_M_get_Node_allocator(), 1); }
void
_M_put_node(_Link_type __p) _GLIBCXX_NOEXCEPT
{ _Alloc_traits::deallocate(_M_get_Node_allocator(), __p, 1); }
#if __cplusplus < 201103L
void
_M_construct_node(_Link_type __node, const value_type& __x)
{
__try
{ get_allocator().construct(__node->_M_valptr(), __x); }
__catch(...)
{
_M_put_node(__node);
__throw_exception_again;
}
}
_Link_type
_M_create_node(const value_type& __x)
{
_Link_type __tmp = _M_get_node();
_M_construct_node(__tmp, __x);
return __tmp;
}
#else
template<typename... _Args>
void
_M_construct_node(_Link_type __node, _Args&&... __args)
{
__try
{
::new(__node) _Rb_tree_node<_Val>;
_Alloc_traits::construct(_M_get_Node_allocator(),
__node->_M_valptr(),
std::forward<_Args>(__args)...);
}
__catch(...)
{
__node->~_Rb_tree_node<_Val>();
_M_put_node(__node);
__throw_exception_again;
}
}
template<typename... _Args>
_Link_type
_M_create_node(_Args&&... __args)
{
_Link_type __tmp = _M_get_node();
_M_construct_node(__tmp, std::forward<_Args>(__args)...);
return __tmp;
}
#endif
void
_M_destroy_node(_Link_type __p) _GLIBCXX_NOEXCEPT
{
#if __cplusplus < 201103L
get_allocator().destroy(__p->_M_valptr());
#else
_Alloc_traits::destroy(_M_get_Node_allocator(), __p->_M_valptr());
__p->~_Rb_tree_node<_Val>();
#endif
}
void
_M_drop_node(_Link_type __p) _GLIBCXX_NOEXCEPT
{
_M_destroy_node(__p);
_M_put_node(__p);
}
template<bool _MoveValue, typename _NodeGen>
_Link_type
_M_clone_node(_Link_type __x, _NodeGen& __node_gen)
{
#if __cplusplus >= 201103L
using _Vp = typename conditional<_MoveValue,
value_type&&,
const value_type&>::type;
#endif
_Link_type __tmp
= __node_gen(_GLIBCXX_FORWARD(_Vp, *__x->_M_valptr()));
__tmp->_M_color = __x->_M_color;
__tmp->_M_left = 0;
__tmp->_M_right = 0;
return __tmp;
}
protected:
#if _GLIBCXX_INLINE_VERSION
template<typename _Key_compare>
#else
// Unused _Is_pod_comparator is kept as it is part of mangled name.
template<typename _Key_compare,
bool /* _Is_pod_comparator */ = __is_pod(_Key_compare)>
#endif
struct _Rb_tree_impl
: public _Node_allocator
, public _Rb_tree_key_compare<_Key_compare>
, public _Rb_tree_header
{
typedef _Rb_tree_key_compare<_Key_compare> _Base_key_compare;
_Rb_tree_impl()
_GLIBCXX_NOEXCEPT_IF(
is_nothrow_default_constructible<_Node_allocator>::value
&& is_nothrow_default_constructible<_Base_key_compare>::value )
: _Node_allocator()
{ }
_Rb_tree_impl(const _Rb_tree_impl& __x)
: _Node_allocator(_Alloc_traits::_S_select_on_copy(__x))
, _Base_key_compare(__x._M_key_compare)
, _Rb_tree_header()
{ }
#if __cplusplus < 201103L
_Rb_tree_impl(const _Key_compare& __comp, const _Node_allocator& __a)
: _Node_allocator(__a), _Base_key_compare(__comp)
{ }
#else
_Rb_tree_impl(_Rb_tree_impl&&)
noexcept( is_nothrow_move_constructible<_Base_key_compare>::value )
= default;
explicit
_Rb_tree_impl(_Node_allocator&& __a)
: _Node_allocator(std::move(__a))
{ }
_Rb_tree_impl(_Rb_tree_impl&& __x, _Node_allocator&& __a)
: _Node_allocator(std::move(__a)),
_Base_key_compare(std::move(__x)),
_Rb_tree_header(std::move(__x))
{ }
_Rb_tree_impl(const _Key_compare& __comp, _Node_allocator&& __a)
: _Node_allocator(std::move(__a)), _Base_key_compare(__comp)
{ }
#endif
};
_Rb_tree_impl<_Compare> _M_impl;
protected:
_Base_ptr&
_M_root() _GLIBCXX_NOEXCEPT
{ return this->_M_impl._M_header._M_parent; }
_Const_Base_ptr
_M_root() const _GLIBCXX_NOEXCEPT
{ return this->_M_impl._M_header._M_parent; }
_Base_ptr&
_M_leftmost() _GLIBCXX_NOEXCEPT
{ return this->_M_impl._M_header._M_left; }
_Const_Base_ptr
_M_leftmost() const _GLIBCXX_NOEXCEPT
{ return this->_M_impl._M_header._M_left; }
_Base_ptr&
_M_rightmost() _GLIBCXX_NOEXCEPT
{ return this->_M_impl._M_header._M_right; }
_Const_Base_ptr
_M_rightmost() const _GLIBCXX_NOEXCEPT
{ return this->_M_impl._M_header._M_right; }
_Link_type
_M_mbegin() const _GLIBCXX_NOEXCEPT
{ return static_cast<_Link_type>(this->_M_impl._M_header._M_parent); }
_Link_type
_M_begin() _GLIBCXX_NOEXCEPT
{ return _M_mbegin(); }
_Const_Link_type
_M_begin() const _GLIBCXX_NOEXCEPT
{
return static_cast<_Const_Link_type>
(this->_M_impl._M_header._M_parent);
}
_Base_ptr
_M_end() _GLIBCXX_NOEXCEPT
{ return &this->_M_impl._M_header; }
_Const_Base_ptr
_M_end() const _GLIBCXX_NOEXCEPT
{ return &this->_M_impl._M_header; }
static const _Key&
_S_key(_Const_Link_type __x)
{
#if __cplusplus >= 201103L
// If we're asking for the key we're presumably using the comparison
// object, and so this is a good place to sanity check it.
static_assert(__is_invocable<_Compare&, const _Key&, const _Key&>{},
"comparison object must be invocable "
"with two arguments of key type");
# if __cplusplus >= 201703L
// _GLIBCXX_RESOLVE_LIB_DEFECTS
// 2542. Missing const requirements for associative containers
if constexpr (__is_invocable<_Compare&, const _Key&, const _Key&>{})
static_assert(
is_invocable_v<const _Compare&, const _Key&, const _Key&>,
"comparison object must be invocable as const");
# endif // C++17
#endif // C++11
return _KeyOfValue()(*__x->_M_valptr());
}
static _Link_type
_S_left(_Base_ptr __x) _GLIBCXX_NOEXCEPT
{ return static_cast<_Link_type>(__x->_M_left); }
static _Const_Link_type
_S_left(_Const_Base_ptr __x) _GLIBCXX_NOEXCEPT
{ return static_cast<_Const_Link_type>(__x->_M_left); }
static _Link_type
_S_right(_Base_ptr __x) _GLIBCXX_NOEXCEPT
{ return static_cast<_Link_type>(__x->_M_right); }
static _Const_Link_type
_S_right(_Const_Base_ptr __x) _GLIBCXX_NOEXCEPT
{ return static_cast<_Const_Link_type>(__x->_M_right); }
static const _Key&
_S_key(_Const_Base_ptr __x)
{ return _S_key(static_cast<_Const_Link_type>(__x)); }
static _Base_ptr
_S_minimum(_Base_ptr __x) _GLIBCXX_NOEXCEPT
{ return _Rb_tree_node_base::_S_minimum(__x); }
static _Const_Base_ptr
_S_minimum(_Const_Base_ptr __x) _GLIBCXX_NOEXCEPT
{ return _Rb_tree_node_base::_S_minimum(__x); }
static _Base_ptr
_S_maximum(_Base_ptr __x) _GLIBCXX_NOEXCEPT
{ return _Rb_tree_node_base::_S_maximum(__x); }
static _Const_Base_ptr
_S_maximum(_Const_Base_ptr __x) _GLIBCXX_NOEXCEPT
{ return _Rb_tree_node_base::_S_maximum(__x); }
public:
typedef _Rb_tree_iterator<value_type> iterator;
typedef _Rb_tree_const_iterator<value_type> const_iterator;
typedef std::reverse_iterator<iterator> reverse_iterator;
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
#if __cplusplus > 201402L
using node_type = _Node_handle<_Key, _Val, _Node_allocator>;
using insert_return_type = _Node_insert_return<
conditional_t<is_same_v<_Key, _Val>, const_iterator, iterator>,
node_type>;
#endif
pair<_Base_ptr, _Base_ptr>
_M_get_insert_unique_pos(const key_type& __k);
pair<_Base_ptr, _Base_ptr>
_M_get_insert_equal_pos(const key_type& __k);
pair<_Base_ptr, _Base_ptr>
_M_get_insert_hint_unique_pos(const_iterator __pos,
const key_type& __k);
pair<_Base_ptr, _Base_ptr>
_M_get_insert_hint_equal_pos(const_iterator __pos,
const key_type& __k);
private:
#if __cplusplus >= 201103L
template<typename _Arg, typename _NodeGen>
iterator
_M_insert_(_Base_ptr __x, _Base_ptr __y, _Arg&& __v, _NodeGen&);
iterator
_M_insert_node(_Base_ptr __x, _Base_ptr __y, _Link_type __z);
template<typename _Arg>
iterator
_M_insert_lower(_Base_ptr __y, _Arg&& __v);
template<typename _Arg>
iterator
_M_insert_equal_lower(_Arg&& __x);
iterator
_M_insert_lower_node(_Base_ptr __p, _Link_type __z);
iterator
_M_insert_equal_lower_node(_Link_type __z);
#else
template<typename _NodeGen>
iterator
_M_insert_(_Base_ptr __x, _Base_ptr __y,
const value_type& __v, _NodeGen&);
// _GLIBCXX_RESOLVE_LIB_DEFECTS
// 233. Insertion hints in associative containers.
iterator
_M_insert_lower(_Base_ptr __y, const value_type& __v);
iterator
_M_insert_equal_lower(const value_type& __x);
#endif
enum { __as_lvalue, __as_rvalue };
template<bool _MoveValues, typename _NodeGen>
_Link_type
_M_copy(_Link_type, _Base_ptr, _NodeGen&);
template<bool _MoveValues, typename _NodeGen>
_Link_type
_M_copy(const _Rb_tree& __x, _NodeGen& __gen)
{
_Link_type __root =
_M_copy<_MoveValues>(__x._M_mbegin(), _M_end(), __gen);
_M_leftmost() = _S_minimum(__root);
_M_rightmost() = _S_maximum(__root);
_M_impl._M_node_count = __x._M_impl._M_node_count;
return __root;
}
_Link_type
_M_copy(const _Rb_tree& __x)
{
_Alloc_node __an(*this);
return _M_copy<__as_lvalue>(__x, __an);
}
void
_M_erase(_Link_type __x);
iterator
_M_lower_bound(_Link_type __x, _Base_ptr __y,
const _Key& __k);
const_iterator
_M_lower_bound(_Const_Link_type __x, _Const_Base_ptr __y,
const _Key& __k) const;
iterator
_M_upper_bound(_Link_type __x, _Base_ptr __y,
const _Key& __k);
const_iterator
_M_upper_bound(_Const_Link_type __x, _Const_Base_ptr __y,
const _Key& __k) const;
public:
// allocation/deallocation
#if __cplusplus < 201103L
_Rb_tree() { }
#else
_Rb_tree() = default;
#endif
_Rb_tree(const _Compare& __comp,
const allocator_type& __a = allocator_type())
: _M_impl(__comp, _Node_allocator(__a)) { }
_Rb_tree(const _Rb_tree& __x)
: _M_impl(__x._M_impl)
{
if (__x._M_root() != 0)
_M_root() = _M_copy(__x);
}
#if __cplusplus >= 201103L
_Rb_tree(const allocator_type& __a)
: _M_impl(_Node_allocator(__a))
{ }
_Rb_tree(const _Rb_tree& __x, const allocator_type& __a)
: _M_impl(__x._M_impl._M_key_compare, _Node_allocator(__a))
{
if (__x._M_root() != nullptr)
_M_root() = _M_copy(__x);
}
_Rb_tree(_Rb_tree&&) = default;
_Rb_tree(_Rb_tree&& __x, const allocator_type& __a)
: _Rb_tree(std::move(__x), _Node_allocator(__a))
{ }
private:
_Rb_tree(_Rb_tree&& __x, _Node_allocator&& __a, true_type)
noexcept(is_nothrow_default_constructible<_Compare>::value)
: _M_impl(std::move(__x._M_impl), std::move(__a))
{ }
_Rb_tree(_Rb_tree&& __x, _Node_allocator&& __a, false_type)
: _M_impl(__x._M_impl._M_key_compare, std::move(__a))
{
if (__x._M_root() != nullptr)
_M_move_data(__x, false_type{});
}
public:
_Rb_tree(_Rb_tree&& __x, _Node_allocator&& __a)
noexcept( noexcept(
_Rb_tree(std::declval<_Rb_tree&&>(), std::declval<_Node_allocator&&>(),
std::declval<typename _Alloc_traits::is_always_equal>())) )
: _Rb_tree(std::move(__x), std::move(__a),
typename _Alloc_traits::is_always_equal{})
{ }
#endif
~_Rb_tree() _GLIBCXX_NOEXCEPT
{ _M_erase(_M_begin()); }
_Rb_tree&
operator=(const _Rb_tree& __x);
// Accessors.
_Compare
key_comp() const
{ return _M_impl._M_key_compare; }
iterator
begin() _GLIBCXX_NOEXCEPT
{ return iterator(this->_M_impl._M_header._M_left); }
const_iterator
begin() const _GLIBCXX_NOEXCEPT
{ return const_iterator(this->_M_impl._M_header._M_left); }
iterator
end() _GLIBCXX_NOEXCEPT
{ return iterator(&this->_M_impl._M_header); }
const_iterator
end() const _GLIBCXX_NOEXCEPT
{ return const_iterator(&this->_M_impl._M_header); }
reverse_iterator
rbegin() _GLIBCXX_NOEXCEPT
{ return reverse_iterator(end()); }
const_reverse_iterator
rbegin() const _GLIBCXX_NOEXCEPT
{ return const_reverse_iterator(end()); }
reverse_iterator
rend() _GLIBCXX_NOEXCEPT
{ return reverse_iterator(begin()); }
const_reverse_iterator
rend() const _GLIBCXX_NOEXCEPT
{ return const_reverse_iterator(begin()); }
_GLIBCXX_NODISCARD bool
empty() const _GLIBCXX_NOEXCEPT
{ return _M_impl._M_node_count == 0; }
size_type
size() const _GLIBCXX_NOEXCEPT
{ return _M_impl._M_node_count; }
size_type
max_size() const _GLIBCXX_NOEXCEPT
{ return _Alloc_traits::max_size(_M_get_Node_allocator()); }
void
swap(_Rb_tree& __t)
_GLIBCXX_NOEXCEPT_IF(__is_nothrow_swappable<_Compare>::value);
// Insert/erase.
#if __cplusplus >= 201103L
template<typename _Arg>
pair<iterator, bool>
_M_insert_unique(_Arg&& __x);
template<typename _Arg>
iterator
_M_insert_equal(_Arg&& __x);
template<typename _Arg, typename _NodeGen>
iterator
_M_insert_unique_(const_iterator __pos, _Arg&& __x, _NodeGen&);
template<typename _Arg>
iterator
_M_insert_unique_(const_iterator __pos, _Arg&& __x)
{
_Alloc_node __an(*this);
return _M_insert_unique_(__pos, std::forward<_Arg>(__x), __an);
}
template<typename _Arg, typename _NodeGen>
iterator
_M_insert_equal_(const_iterator __pos, _Arg&& __x, _NodeGen&);
template<typename _Arg>
iterator
_M_insert_equal_(const_iterator __pos, _Arg&& __x)
{
_Alloc_node __an(*this);
return _M_insert_equal_(__pos, std::forward<_Arg>(__x), __an);
}
template<typename... _Args>
pair<iterator, bool>
_M_emplace_unique(_Args&&... __args);
template<typename... _Args>
iterator
_M_emplace_equal(_Args&&... __args);
template<typename... _Args>
iterator
_M_emplace_hint_unique(const_iterator __pos, _Args&&... __args);
template<typename... _Args>
iterator
_M_emplace_hint_equal(const_iterator __pos, _Args&&... __args);
template<typename _Iter>
using __same_value_type
= is_same<value_type, typename iterator_traits<_Iter>::value_type>;
template<typename _InputIterator>
__enable_if_t<__same_value_type<_InputIterator>::value>
_M_insert_range_unique(_InputIterator __first, _InputIterator __last)
{
_Alloc_node __an(*this);
for (; __first != __last; ++__first)
_M_insert_unique_(end(), *__first, __an);
}
template<typename _InputIterator>
__enable_if_t<!__same_value_type<_InputIterator>::value>
_M_insert_range_unique(_InputIterator __first, _InputIterator __last)
{
for (; __first != __last; ++__first)
_M_emplace_unique(*__first);
}
template<typename _InputIterator>
__enable_if_t<__same_value_type<_InputIterator>::value>
_M_insert_range_equal(_InputIterator __first, _InputIterator __last)
{
_Alloc_node __an(*this);
for (; __first != __last; ++__first)
_M_insert_equal_(end(), *__first, __an);
}
template<typename _InputIterator>
__enable_if_t<!__same_value_type<_InputIterator>::value>
_M_insert_range_equal(_InputIterator __first, _InputIterator __last)
{
_Alloc_node __an(*this);
for (; __first != __last; ++__first)
_M_emplace_equal(*__first);
}
#else
pair<iterator, bool>
_M_insert_unique(const value_type& __x);
iterator
_M_insert_equal(const value_type& __x);
template<typename _NodeGen>
iterator
_M_insert_unique_(const_iterator __pos, const value_type& __x,
_NodeGen&);
iterator
_M_insert_unique_(const_iterator __pos, const value_type& __x)
{
_Alloc_node __an(*this);
return _M_insert_unique_(__pos, __x, __an);
}
template<typename _NodeGen>
iterator
_M_insert_equal_(const_iterator __pos, const value_type& __x,
_NodeGen&);
iterator
_M_insert_equal_(const_iterator __pos, const value_type& __x)
{
_Alloc_node __an(*this);
return _M_insert_equal_(__pos, __x, __an);
}
template<typename _InputIterator>
void
_M_insert_range_unique(_InputIterator __first, _InputIterator __last)
{
_Alloc_node __an(*this);
for (; __first != __last; ++__first)
_M_insert_unique_(end(), *__first, __an);
}
template<typename _InputIterator>
void
_M_insert_range_equal(_InputIterator __first, _InputIterator __last)
{
_Alloc_node __an(*this);
for (; __first != __last; ++__first)
_M_insert_equal_(end(), *__first, __an);
}
#endif
private:
void
_M_erase_aux(const_iterator __position);
void
_M_erase_aux(const_iterator __first, const_iterator __last);
public:
#if __cplusplus >= 201103L
// _GLIBCXX_RESOLVE_LIB_DEFECTS
// DR 130. Associative erase should return an iterator.
_GLIBCXX_ABI_TAG_CXX11
iterator
erase(const_iterator __position)
{
__glibcxx_assert(__position != end());
const_iterator __result = __position;
++__result;
_M_erase_aux(__position);
return __result._M_const_cast();
}
// LWG 2059.
_GLIBCXX_ABI_TAG_CXX11
iterator
erase(iterator __position)
{
__glibcxx_assert(__position != end());
iterator __result = __position;
++__result;
_M_erase_aux(__position);
return __result;
}
#else
void
erase(iterator __position)
{
__glibcxx_assert(__position != end());
_M_erase_aux(__position);
}
void
erase(const_iterator __position)
{
__glibcxx_assert(__position != end());
_M_erase_aux(__position);
}
#endif
size_type
erase(const key_type& __x);
#if __cplusplus >= 201103L
// _GLIBCXX_RESOLVE_LIB_DEFECTS
// DR 130. Associative erase should return an iterator.
_GLIBCXX_ABI_TAG_CXX11
iterator
erase(const_iterator __first, const_iterator __last)
{
_M_erase_aux(__first, __last);
return __last._M_const_cast();
}
#else
void
erase(iterator __first, iterator __last)
{ _M_erase_aux(__first, __last); }
void
erase(const_iterator __first, const_iterator __last)
{ _M_erase_aux(__first, __last); }
#endif
void
clear() _GLIBCXX_NOEXCEPT
{
_M_erase(_M_begin());
_M_impl._M_reset();
}
// Set operations.
iterator
find(const key_type& __k);
const_iterator
find(const key_type& __k) const;
size_type
count(const key_type& __k) const;
iterator
lower_bound(const key_type& __k)
{ return _M_lower_bound(_M_begin(), _M_end(), __k); }
const_iterator
lower_bound(const key_type& __k) const
{ return _M_lower_bound(_M_begin(), _M_end(), __k); }
iterator
upper_bound(const key_type& __k)
{ return _M_upper_bound(_M_begin(), _M_end(), __k); }
const_iterator
upper_bound(const key_type& __k) const
{ return _M_upper_bound(_M_begin(), _M_end(), __k); }
pair<iterator, iterator>
equal_range(const key_type& __k);
pair<const_iterator, const_iterator>
equal_range(const key_type& __k) const;
#if __cplusplus >= 201402L
template<typename _Kt,
typename _Req = __has_is_transparent_t<_Compare, _Kt>>
iterator
_M_find_tr(const _Kt& __k)
{
const _Rb_tree* __const_this = this;
return __const_this->_M_find_tr(__k)._M_const_cast();
}
template<typename _Kt,
typename _Req = __has_is_transparent_t<_Compare, _Kt>>
const_iterator
_M_find_tr(const _Kt& __k) const
{
auto __j = _M_lower_bound_tr(__k);
if (__j != end() && _M_impl._M_key_compare(__k, _S_key(__j._M_node)))
__j = end();
return __j;
}
template<typename _Kt,
typename _Req = __has_is_transparent_t<_Compare, _Kt>>
size_type
_M_count_tr(const _Kt& __k) const
{
auto __p = _M_equal_range_tr(__k);
return std::distance(__p.first, __p.second);
}
template<typename _Kt,
typename _Req = __has_is_transparent_t<_Compare, _Kt>>
iterator
_M_lower_bound_tr(const _Kt& __k)
{
const _Rb_tree* __const_this = this;
return __const_this->_M_lower_bound_tr(__k)._M_const_cast();
}
template<typename _Kt,
typename _Req = __has_is_transparent_t<_Compare, _Kt>>
const_iterator
_M_lower_bound_tr(const _Kt& __k) const
{
auto __x = _M_begin();
auto __y = _M_end();
while (__x != 0)
if (!_M_impl._M_key_compare(_S_key(__x), __k))
{
__y = __x;
__x = _S_left(__x);
}
else
__x = _S_right(__x);
return const_iterator(__y);
}
template<typename _Kt,
typename _Req = __has_is_transparent_t<_Compare, _Kt>>
iterator
_M_upper_bound_tr(const _Kt& __k)
{
const _Rb_tree* __const_this = this;
return __const_this->_M_upper_bound_tr(__k)._M_const_cast();
}
template<typename _Kt,
typename _Req = __has_is_transparent_t<_Compare, _Kt>>
const_iterator
_M_upper_bound_tr(const _Kt& __k) const
{
auto __x = _M_begin();
auto __y = _M_end();
while (__x != 0)
if (_M_impl._M_key_compare(__k, _S_key(__x)))
{
__y = __x;
__x = _S_left(__x);
}
else
__x = _S_right(__x);
return const_iterator(__y);
}
template<typename _Kt,
typename _Req = __has_is_transparent_t<_Compare, _Kt>>
pair<iterator, iterator>
_M_equal_range_tr(const _Kt& __k)
{
const _Rb_tree* __const_this = this;
auto __ret = __const_this->_M_equal_range_tr(__k);
return { __ret.first._M_const_cast(), __ret.second._M_const_cast() };
}
template<typename _Kt,
typename _Req = __has_is_transparent_t<_Compare, _Kt>>
pair<const_iterator, const_iterator>
_M_equal_range_tr(const _Kt& __k) const
{
auto __low = _M_lower_bound_tr(__k);
auto __high = __low;
auto& __cmp = _M_impl._M_key_compare;
while (__high != end() && !__cmp(__k, _S_key(__high._M_node)))
++__high;
return { __low, __high };
}
#endif
// Debugging.
bool
__rb_verify() const;
#if __cplusplus >= 201103L
_Rb_tree&
operator=(_Rb_tree&&)
noexcept(_Alloc_traits::_S_nothrow_move()
&& is_nothrow_move_assignable<_Compare>::value);
template<typename _Iterator>
void
_M_assign_unique(_Iterator, _Iterator);
template<typename _Iterator>
void
_M_assign_equal(_Iterator, _Iterator);
private:
// Move elements from container with equal allocator.
void
_M_move_data(_Rb_tree& __x, true_type)
{ _M_impl._M_move_data(__x._M_impl); }
// Move elements from container with possibly non-equal allocator,
// which might result in a copy not a move.
void
_M_move_data(_Rb_tree&, false_type);
// Move assignment from container with equal allocator.
void
_M_move_assign(_Rb_tree&, true_type);
// Move assignment from container with possibly non-equal allocator,
// which might result in a copy not a move.
void
_M_move_assign(_Rb_tree&, false_type);
#endif
#if __cplusplus > 201402L
public:
/// Re-insert an extracted node.
insert_return_type
_M_reinsert_node_unique(node_type&& __nh)
{
insert_return_type __ret;
if (__nh.empty())
__ret.position = end();
else
{
__glibcxx_assert(_M_get_Node_allocator() == *__nh._M_alloc);
auto __res = _M_get_insert_unique_pos(__nh._M_key());
if (__res.second)
{
__ret.position
= _M_insert_node(__res.first, __res.second, __nh._M_ptr);
__nh._M_ptr = nullptr;
__ret.inserted = true;
}
else
{
__ret.node = std::move(__nh);
__ret.position = iterator(__res.first);
__ret.inserted = false;
}
}
return __ret;
}
/// Re-insert an extracted node.
iterator
_M_reinsert_node_equal(node_type&& __nh)
{
iterator __ret;
if (__nh.empty())
__ret = end();
else
{
__glibcxx_assert(_M_get_Node_allocator() == *__nh._M_alloc);
auto __res = _M_get_insert_equal_pos(__nh._M_key());
if (__res.second)
__ret = _M_insert_node(__res.first, __res.second, __nh._M_ptr);
else
__ret = _M_insert_equal_lower_node(__nh._M_ptr);
__nh._M_ptr = nullptr;
}
return __ret;
}
/// Re-insert an extracted node.
iterator
_M_reinsert_node_hint_unique(const_iterator __hint, node_type&& __nh)
{
iterator __ret;
if (__nh.empty())
__ret = end();
else
{
__glibcxx_assert(_M_get_Node_allocator() == *__nh._M_alloc);
auto __res = _M_get_insert_hint_unique_pos(__hint, __nh._M_key());
if (__res.second)
{
__ret = _M_insert_node(__res.first, __res.second, __nh._M_ptr);
__nh._M_ptr = nullptr;
}
else
__ret = iterator(__res.first);
}
return __ret;
}
/// Re-insert an extracted node.
iterator
_M_reinsert_node_hint_equal(const_iterator __hint, node_type&& __nh)
{
iterator __ret;
if (__nh.empty())
__ret = end();
else
{
__glibcxx_assert(_M_get_Node_allocator() == *__nh._M_alloc);
auto __res = _M_get_insert_hint_equal_pos(__hint, __nh._M_key());
if (__res.second)
__ret = _M_insert_node(__res.first, __res.second, __nh._M_ptr);
else
__ret = _M_insert_equal_lower_node(__nh._M_ptr);
__nh._M_ptr = nullptr;
}
return __ret;
}
/// Extract a node.
node_type
extract(const_iterator __pos)
{
auto __ptr = _Rb_tree_rebalance_for_erase(
__pos._M_const_cast()._M_node, _M_impl._M_header);
--_M_impl._M_node_count;
return { static_cast<_Link_type>(__ptr), _M_get_Node_allocator() };
}
/// Extract a node.
node_type
extract(const key_type& __k)
{
node_type __nh;
auto __pos = find(__k);
if (__pos != end())
__nh = extract(const_iterator(__pos));
return __nh;
}
template<typename _Compare2>
using _Compatible_tree
= _Rb_tree<_Key, _Val, _KeyOfValue, _Compare2, _Alloc>;
template<typename, typename>
friend class _Rb_tree_merge_helper;
/// Merge from a compatible container into one with unique keys.
template<typename _Compare2>
void
_M_merge_unique(_Compatible_tree<_Compare2>& __src) noexcept
{
using _Merge_helper = _Rb_tree_merge_helper<_Rb_tree, _Compare2>;
for (auto __i = __src.begin(), __end = __src.end(); __i != __end;)
{
auto __pos = __i++;
auto __res = _M_get_insert_unique_pos(_KeyOfValue()(*__pos));
if (__res.second)
{
auto& __src_impl = _Merge_helper::_S_get_impl(__src);
auto __ptr = _Rb_tree_rebalance_for_erase(
__pos._M_node, __src_impl._M_header);
--__src_impl._M_node_count;
_M_insert_node(__res.first, __res.second,
static_cast<_Link_type>(__ptr));
}
}
}
/// Merge from a compatible container into one with equivalent keys.
template<typename _Compare2>
void
_M_merge_equal(_Compatible_tree<_Compare2>& __src) noexcept
{
using _Merge_helper = _Rb_tree_merge_helper<_Rb_tree, _Compare2>;
for (auto __i = __src.begin(), __end = __src.end(); __i != __end;)
{
auto __pos = __i++;
auto __res = _M_get_insert_equal_pos(_KeyOfValue()(*__pos));
if (__res.second)
{
auto& __src_impl = _Merge_helper::_S_get_impl(__src);
auto __ptr = _Rb_tree_rebalance_for_erase(
__pos._M_node, __src_impl._M_header);
--__src_impl._M_node_count;
_M_insert_node(__res.first, __res.second,
static_cast<_Link_type>(__ptr));
}
}
}
#endif // C++17
friend bool
operator==(const _Rb_tree& __x, const _Rb_tree& __y)
{
return __x.size() == __y.size()
&& std::equal(__x.begin(), __x.end(), __y.begin());
}
#if __cpp_lib_three_way_comparison
friend auto
operator<=>(const _Rb_tree& __x, const _Rb_tree& __y)
{
if constexpr (requires { typename __detail::__synth3way_t<_Val>; })
return std::lexicographical_compare_three_way(__x.begin(), __x.end(),
__y.begin(), __y.end(),
__detail::__synth3way);
}
#else
friend bool
operator<(const _Rb_tree& __x, const _Rb_tree& __y)
{
return std::lexicographical_compare(__x.begin(), __x.end(),
__y.begin(), __y.end());
}
#endif
};
template<typename _Key, typename _Val, typename _KeyOfValue,
typename _Compare, typename _Alloc>
inline void
swap(_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>& __x,
_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>& __y)
{ __x.swap(__y); }
#if __cplusplus >= 201103L
template<typename _Key, typename _Val, typename _KeyOfValue,
typename _Compare, typename _Alloc>
void
_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::
_M_move_data(_Rb_tree& __x, false_type)
{
if (_M_get_Node_allocator() == __x._M_get_Node_allocator())
_M_move_data(__x, true_type());
else
{
constexpr bool __move = !__move_if_noexcept_cond<value_type>::value;
_Alloc_node __an(*this);
_M_root() = _M_copy<__move>(__x, __an);
if _GLIBCXX17_CONSTEXPR (__move)
__x.clear();
}
}
template<typename _Key, typename _Val, typename _KeyOfValue,
typename _Compare, typename _Alloc>
inline void
_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::
_M_move_assign(_Rb_tree& __x, true_type)
{
clear();
if (__x._M_root() != nullptr)
_M_move_data(__x, true_type());
std::__alloc_on_move(_M_get_Node_allocator(),
__x._M_get_Node_allocator());
}
template<typename _Key, typename _Val, typename _KeyOfValue,
typename _Compare, typename _Alloc>
void
_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::
_M_move_assign(_Rb_tree& __x, false_type)
{
if (_M_get_Node_allocator() == __x._M_get_Node_allocator())
return _M_move_assign(__x, true_type{});
// Try to move each node reusing existing nodes and copying __x nodes
// structure.
_Reuse_or_alloc_node __roan(*this);
_M_impl._M_reset();
if (__x._M_root() != nullptr)
{
_M_root() = _M_copy<__as_rvalue>(__x, __roan);
__x.clear();
}
}
template<typename _Key, typename _Val, typename _KeyOfValue,
typename _Compare, typename _Alloc>
inline _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>&
_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::
operator=(_Rb_tree&& __x)
noexcept(_Alloc_traits::_S_nothrow_move()
&& is_nothrow_move_assignable<_Compare>::value)
{
_M_impl._M_key_compare = std::move(__x._M_impl._M_key_compare);
_M_move_assign(__x, __bool_constant<_Alloc_traits::_S_nothrow_move()>());
return *this;
}
template<typename _Key, typename _Val, typename _KeyOfValue,
typename _Compare, typename _Alloc>
template<typename _Iterator>
void
_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::
_M_assign_unique(_Iterator __first, _Iterator __last)
{
_Reuse_or_alloc_node __roan(*this);
_M_impl._M_reset();
for (; __first != __last; ++__first)
_M_insert_unique_(end(), *__first, __roan);
}
template<typename _Key, typename _Val, typename _KeyOfValue,
typename _Compare, typename _Alloc>
template<typename _Iterator>
void
_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::
_M_assign_equal(_Iterator __first, _Iterator __last)
{
_Reuse_or_alloc_node __roan(*this);
_M_impl._M_reset();
for (; __first != __last; ++__first)
_M_insert_equal_(end(), *__first, __roan);
}
#endif
template<typename _Key, typename _Val, typename _KeyOfValue,
typename _Compare, typename _Alloc>
_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>&
_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::
operator=(const _Rb_tree& __x)
{
if (this != &__x)
{
// Note that _Key may be a constant type.
#if __cplusplus >= 201103L
if (_Alloc_traits::_S_propagate_on_copy_assign())
{
auto& __this_alloc = this->_M_get_Node_allocator();
auto& __that_alloc = __x._M_get_Node_allocator();
if (!_Alloc_traits::_S_always_equal()
&& __this_alloc != __that_alloc)
{
// Replacement allocator cannot free existing storage, we need
// to erase nodes first.
clear();
std::__alloc_on_copy(__this_alloc, __that_alloc);
}
}
#endif
_Reuse_or_alloc_node __roan(*this);
_M_impl._M_reset();
_M_impl._M_key_compare = __x._M_impl._M_key_compare;
if (__x._M_root() != 0)
_M_root() = _M_copy<__as_lvalue>(__x, __roan);
}
return *this;
}
template<typename _Key, typename _Val, typename _KeyOfValue,
typename _Compare, typename _Alloc>
#if __cplusplus >= 201103L
template<typename _Arg, typename _NodeGen>
#else
template<typename _NodeGen>
#endif
typename _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::iterator
_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::
_M_insert_(_Base_ptr __x, _Base_ptr __p,
#if __cplusplus >= 201103L
_Arg&& __v,
#else
const _Val& __v,
#endif
_NodeGen& __node_gen)
{
bool __insert_left = (__x != 0 || __p == _M_end()
|| _M_impl._M_key_compare(_KeyOfValue()(__v),
_S_key(__p)));
_Link_type __z = __node_gen(_GLIBCXX_FORWARD(_Arg, __v));
_Rb_tree_insert_and_rebalance(__insert_left, __z, __p,
this->_M_impl._M_header);
++_M_impl._M_node_count;
return iterator(__z);
}
template<typename _Key, typename _Val, typename _KeyOfValue,
typename _Compare, typename _Alloc>
#if __cplusplus >= 201103L
template<typename _Arg>
#endif
typename _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::iterator
_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::
#if __cplusplus >= 201103L
_M_insert_lower(_Base_ptr __p, _Arg&& __v)
#else
_M_insert_lower(_Base_ptr __p, const _Val& __v)
#endif
{
bool __insert_left = (__p == _M_end()
|| !_M_impl._M_key_compare(_S_key(__p),
_KeyOfValue()(__v)));
_Link_type __z = _M_create_node(_GLIBCXX_FORWARD(_Arg, __v));
_Rb_tree_insert_and_rebalance(__insert_left, __z, __p,
this->_M_impl._M_header);
++_M_impl._M_node_count;
return iterator(__z);
}
template<typename _Key, typename _Val, typename _KeyOfValue,
typename _Compare, typename _Alloc>
#if __cplusplus >= 201103L
template<typename _Arg>
#endif
typename _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::iterator
_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::
#if __cplusplus >= 201103L
_M_insert_equal_lower(_Arg&& __v)
#else
_M_insert_equal_lower(const _Val& __v)
#endif
{
_Link_type __x = _M_begin();
_Base_ptr __y = _M_end();
while (__x != 0)
{
__y = __x;
__x = !_M_impl._M_key_compare(_S_key(__x), _KeyOfValue()(__v)) ?
_S_left(__x) : _S_right(__x);
}
return _M_insert_lower(__y, _GLIBCXX_FORWARD(_Arg, __v));
}
template<typename _Key, typename _Val, typename _KoV,
typename _Compare, typename _Alloc>
template<bool _MoveValues, typename _NodeGen>
typename _Rb_tree<_Key, _Val, _KoV, _Compare, _Alloc>::_Link_type
_Rb_tree<_Key, _Val, _KoV, _Compare, _Alloc>::
_M_copy(_Link_type __x, _Base_ptr __p, _NodeGen& __node_gen)
{
// Structural copy. __x and __p must be non-null.
_Link_type __top = _M_clone_node<_MoveValues>(__x, __node_gen);
__top->_M_parent = __p;
__try
{
if (__x->_M_right)
__top->_M_right =
_M_copy<_MoveValues>(_S_right(__x), __top, __node_gen);
__p = __top;
__x = _S_left(__x);
while (__x != 0)
{
_Link_type __y = _M_clone_node<_MoveValues>(__x, __node_gen);
__p->_M_left = __y;
__y->_M_parent = __p;
if (__x->_M_right)
__y->_M_right = _M_copy<_MoveValues>(_S_right(__x),
__y, __node_gen);
__p = __y;
__x = _S_left(__x);
}
}
__catch(...)
{
_M_erase(__top);
__throw_exception_again;
}
return __top;
}
template<typename _Key, typename _Val, typename _KeyOfValue,
typename _Compare, typename _Alloc>
void
_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::
_M_erase(_Link_type __x)
{
// Erase without rebalancing.
while (__x != 0)
{
_M_erase(_S_right(__x));
_Link_type __y = _S_left(__x);
_M_drop_node(__x);
__x = __y;
}
}
template<typename _Key, typename _Val, typename _KeyOfValue,
typename _Compare, typename _Alloc>
typename _Rb_tree<_Key, _Val, _KeyOfValue,
_Compare, _Alloc>::iterator
_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::
_M_lower_bound(_Link_type __x, _Base_ptr __y,
const _Key& __k)
{
while (__x != 0)
if (!_M_impl._M_key_compare(_S_key(__x), __k))
__y = __x, __x = _S_left(__x);
else
__x = _S_right(__x);
return iterator(__y);
}
template<typename _Key, typename _Val, typename _KeyOfValue,
typename _Compare, typename _Alloc>
typename _Rb_tree<_Key, _Val, _KeyOfValue,
_Compare, _Alloc>::const_iterator
_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::
_M_lower_bound(_Const_Link_type __x, _Const_Base_ptr __y,
const _Key& __k) const
{
while (__x != 0)
if (!_M_impl._M_key_compare(_S_key(__x), __k))
__y = __x, __x = _S_left(__x);
else
__x = _S_right(__x);
return const_iterator(__y);
}
template<typename _Key, typename _Val, typename _KeyOfValue,
typename _Compare, typename _Alloc>
typename _Rb_tree<_Key, _Val, _KeyOfValue,
_Compare, _Alloc>::iterator
_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::
_M_upper_bound(_Link_type __x, _Base_ptr __y,
const _Key& __k)
{
while (__x != 0)
if (_M_impl._M_key_compare(__k, _S_key(__x)))
__y = __x, __x = _S_left(__x);
else
__x = _S_right(__x);
return iterator(__y);
}
template<typename _Key, typename _Val, typename _KeyOfValue,
typename _Compare, typename _Alloc>
typename _Rb_tree<_Key, _Val, _KeyOfValue,
_Compare, _Alloc>::const_iterator
_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::
_M_upper_bound(_Const_Link_type __x, _Const_Base_ptr __y,
const _Key& __k) const
{
while (__x != 0)
if (_M_impl._M_key_compare(__k, _S_key(__x)))
__y = __x, __x = _S_left(__x);
else
__x = _S_right(__x);
return const_iterator(__y);
}
template<typename _Key, typename _Val, typename _KeyOfValue,
typename _Compare, typename _Alloc>
pair<typename _Rb_tree<_Key, _Val, _KeyOfValue,
_Compare, _Alloc>::iterator,
typename _Rb_tree<_Key, _Val, _KeyOfValue,
_Compare, _Alloc>::iterator>
_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::
equal_range(const _Key& __k)
{
_Link_type __x = _M_begin();
_Base_ptr __y = _M_end();
while (__x != 0)
{
if (_M_impl._M_key_compare(_S_key(__x), __k))
__x = _S_right(__x);
else if (_M_impl._M_key_compare(__k, _S_key(__x)))
__y = __x, __x = _S_left(__x);
else
{
_Link_type __xu(__x);
_Base_ptr __yu(__y);
__y = __x, __x = _S_left(__x);
__xu = _S_right(__xu);
return pair<iterator,
iterator>(_M_lower_bound(__x, __y, __k),
_M_upper_bound(__xu, __yu, __k));
}
}
return pair<iterator, iterator>(iterator(__y),
iterator(__y));
}
template<typename _Key, typename _Val, typename _KeyOfValue,
typename _Compare, typename _Alloc>
pair<typename _Rb_tree<_Key, _Val, _KeyOfValue,
_Compare, _Alloc>::const_iterator,
typename _Rb_tree<_Key, _Val, _KeyOfValue,
_Compare, _Alloc>::const_iterator>
_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::
equal_range(const _Key& __k) const
{
_Const_Link_type __x = _M_begin();
_Const_Base_ptr __y = _M_end();
while (__x != 0)
{
if (_M_impl._M_key_compare(_S_key(__x), __k))
__x = _S_right(__x);
else if (_M_impl._M_key_compare(__k, _S_key(__x)))
__y = __x, __x = _S_left(__x);
else
{
_Const_Link_type __xu(__x);
_Const_Base_ptr __yu(__y);
__y = __x, __x = _S_left(__x);
__xu = _S_right(__xu);
return pair<const_iterator,
const_iterator>(_M_lower_bound(__x, __y, __k),
_M_upper_bound(__xu, __yu, __k));
}
}
return pair<const_iterator, const_iterator>(const_iterator(__y),
const_iterator(__y));
}
template<typename _Key, typename _Val, typename _KeyOfValue,
typename _Compare, typename _Alloc>
void
_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::
swap(_Rb_tree& __t)
_GLIBCXX_NOEXCEPT_IF(__is_nothrow_swappable<_Compare>::value)
{
if (_M_root() == 0)
{
if (__t._M_root() != 0)
_M_impl._M_move_data(__t._M_impl);
}
else if (__t._M_root() == 0)
__t._M_impl._M_move_data(_M_impl);
else
{
std::swap(_M_root(),__t._M_root());
std::swap(_M_leftmost(),__t._M_leftmost());
std::swap(_M_rightmost(),__t._M_rightmost());
_M_root()->_M_parent = _M_end();
__t._M_root()->_M_parent = __t._M_end();
std::swap(this->_M_impl._M_node_count, __t._M_impl._M_node_count);
}
// No need to swap header's color as it does not change.
std::swap(this->_M_impl._M_key_compare, __t._M_impl._M_key_compare);
_Alloc_traits::_S_on_swap(_M_get_Node_allocator(),
__t._M_get_Node_allocator());
}
template<typename _Key, typename _Val, typename _KeyOfValue,
typename _Compare, typename _Alloc>
pair<typename _Rb_tree<_Key, _Val, _KeyOfValue,
_Compare, _Alloc>::_Base_ptr,
typename _Rb_tree<_Key, _Val, _KeyOfValue,
_Compare, _Alloc>::_Base_ptr>
_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::
_M_get_insert_unique_pos(const key_type& __k)
{
typedef pair<_Base_ptr, _Base_ptr> _Res;
_Link_type __x = _M_begin();
_Base_ptr __y = _M_end();
bool __comp = true;
while (__x != 0)
{
__y = __x;
__comp = _M_impl._M_key_compare(__k, _S_key(__x));
__x = __comp ? _S_left(__x) : _S_right(__x);
}
iterator __j = iterator(__y);
if (__comp)
{
if (__j == begin())
return _Res(__x, __y);
else
--__j;
}
if (_M_impl._M_key_compare(_S_key(__j._M_node), __k))
return _Res(__x, __y);
return _Res(__j._M_node, 0);
}
template<typename _Key, typename _Val, typename _KeyOfValue,
typename _Compare, typename _Alloc>
pair<typename _Rb_tree<_Key, _Val, _KeyOfValue,
_Compare, _Alloc>::_Base_ptr,
typename _Rb_tree<_Key, _Val, _KeyOfValue,
_Compare, _Alloc>::_Base_ptr>
_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::
_M_get_insert_equal_pos(const key_type& __k)
{
typedef pair<_Base_ptr, _Base_ptr> _Res;
_Link_type __x = _M_begin();
_Base_ptr __y = _M_end();
while (__x != 0)
{
__y = __x;
__x = _M_impl._M_key_compare(__k, _S_key(__x)) ?
_S_left(__x) : _S_right(__x);
}
return _Res(__x, __y);
}
template<typename _Key, typename _Val, typename _KeyOfValue,
typename _Compare, typename _Alloc>
#if __cplusplus >= 201103L
template<typename _Arg>
#endif
pair<typename _Rb_tree<_Key, _Val, _KeyOfValue,
_Compare, _Alloc>::iterator, bool>
_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::
#if __cplusplus >= 201103L
_M_insert_unique(_Arg&& __v)
#else
_M_insert_unique(const _Val& __v)
#endif
{
typedef pair<iterator, bool> _Res;
pair<_Base_ptr, _Base_ptr> __res
= _M_get_insert_unique_pos(_KeyOfValue()(__v));
if (__res.second)
{
_Alloc_node __an(*this);
return _Res(_M_insert_(__res.first, __res.second,
_GLIBCXX_FORWARD(_Arg, __v), __an),
true);
}
return _Res(iterator(__res.first), false);
}
template<typename _Key, typename _Val, typename _KeyOfValue,
typename _Compare, typename _Alloc>
#if __cplusplus >= 201103L
template<typename _Arg>
#endif
typename _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::iterator
_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::
#if __cplusplus >= 201103L
_M_insert_equal(_Arg&& __v)
#else
_M_insert_equal(const _Val& __v)
#endif
{
pair<_Base_ptr, _Base_ptr> __res
= _M_get_insert_equal_pos(_KeyOfValue()(__v));
_Alloc_node __an(*this);
return _M_insert_(__res.first, __res.second,
_GLIBCXX_FORWARD(_Arg, __v), __an);
}
template<typename _Key, typename _Val, typename _KeyOfValue,
typename _Compare, typename _Alloc>
pair<typename _Rb_tree<_Key, _Val, _KeyOfValue,
_Compare, _Alloc>::_Base_ptr,
typename _Rb_tree<_Key, _Val, _KeyOfValue,
_Compare, _Alloc>::_Base_ptr>
_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::
_M_get_insert_hint_unique_pos(const_iterator __position,
const key_type& __k)
{
iterator __pos = __position._M_const_cast();
typedef pair<_Base_ptr, _Base_ptr> _Res;
// end()
if (__pos._M_node == _M_end())
{
if (size() > 0
&& _M_impl._M_key_compare(_S_key(_M_rightmost()), __k))
return _Res(0, _M_rightmost());
else
return _M_get_insert_unique_pos(__k);
}
else if (_M_impl._M_key_compare(__k, _S_key(__pos._M_node)))
{
// First, try before...
iterator __before = __pos;
if (__pos._M_node == _M_leftmost()) // begin()
return _Res(_M_leftmost(), _M_leftmost());
else if (_M_impl._M_key_compare(_S_key((--__before)._M_node), __k))
{
if (_S_right(__before._M_node) == 0)
return _Res(0, __before._M_node);
else
return _Res(__pos._M_node, __pos._M_node);
}
else
return _M_get_insert_unique_pos(__k);
}
else if (_M_impl._M_key_compare(_S_key(__pos._M_node), __k))
{
// ... then try after.
iterator __after = __pos;
if (__pos._M_node == _M_rightmost())
return _Res(0, _M_rightmost());
else if (_M_impl._M_key_compare(__k, _S_key((++__after)._M_node)))
{
if (_S_right(__pos._M_node) == 0)
return _Res(0, __pos._M_node);
else
return _Res(__after._M_node, __after._M_node);
}
else
return _M_get_insert_unique_pos(__k);
}
else
// Equivalent keys.
return _Res(__pos._M_node, 0);
}
template<typename _Key, typename _Val, typename _KeyOfValue,
typename _Compare, typename _Alloc>
#if __cplusplus >= 201103L
template<typename _Arg, typename _NodeGen>
#else
template<typename _NodeGen>
#endif
typename _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::iterator
_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::
_M_insert_unique_(const_iterator __position,
#if __cplusplus >= 201103L
_Arg&& __v,
#else
const _Val& __v,
#endif
_NodeGen& __node_gen)
{
pair<_Base_ptr, _Base_ptr> __res
= _M_get_insert_hint_unique_pos(__position, _KeyOfValue()(__v));
if (__res.second)
return _M_insert_(__res.first, __res.second,
_GLIBCXX_FORWARD(_Arg, __v),
__node_gen);
return iterator(__res.first);
}
template<typename _Key, typename _Val, typename _KeyOfValue,
typename _Compare, typename _Alloc>
pair<typename _Rb_tree<_Key, _Val, _KeyOfValue,
_Compare, _Alloc>::_Base_ptr,
typename _Rb_tree<_Key, _Val, _KeyOfValue,
_Compare, _Alloc>::_Base_ptr>
_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::
_M_get_insert_hint_equal_pos(const_iterator __position, const key_type& __k)
{
iterator __pos = __position._M_const_cast();
typedef pair<_Base_ptr, _Base_ptr> _Res;
// end()
if (__pos._M_node == _M_end())
{
if (size() > 0
&& !_M_impl._M_key_compare(__k, _S_key(_M_rightmost())))
return _Res(0, _M_rightmost());
else
return _M_get_insert_equal_pos(__k);
}
else if (!_M_impl._M_key_compare(_S_key(__pos._M_node), __k))
{
// First, try before...
iterator __before = __pos;
if (__pos._M_node == _M_leftmost()) // begin()
return _Res(_M_leftmost(), _M_leftmost());
else if (!_M_impl._M_key_compare(__k, _S_key((--__before)._M_node)))
{
if (_S_right(__before._M_node) == 0)
return _Res(0, __before._M_node);
else
return _Res(__pos._M_node, __pos._M_node);
}
else
return _M_get_insert_equal_pos(__k);
}
else
{
// ... then try after.
iterator __after = __pos;
if (__pos._M_node == _M_rightmost())
return _Res(0, _M_rightmost());
else if (!_M_impl._M_key_compare(_S_key((++__after)._M_node), __k))
{
if (_S_right(__pos._M_node) == 0)
return _Res(0, __pos._M_node);
else
return _Res(__after._M_node, __after._M_node);
}
else
return _Res(0, 0);
}
}
template<typename _Key, typename _Val, typename _KeyOfValue,
typename _Compare, typename _Alloc>
#if __cplusplus >= 201103L
template<typename _Arg, typename _NodeGen>
#else
template<typename _NodeGen>
#endif
typename _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::iterator
_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::
_M_insert_equal_(const_iterator __position,
#if __cplusplus >= 201103L
_Arg&& __v,
#else
const _Val& __v,
#endif
_NodeGen& __node_gen)
{
pair<_Base_ptr, _Base_ptr> __res
= _M_get_insert_hint_equal_pos(__position, _KeyOfValue()(__v));
if (__res.second)
return _M_insert_(__res.first, __res.second,
_GLIBCXX_FORWARD(_Arg, __v),
__node_gen);
return _M_insert_equal_lower(_GLIBCXX_FORWARD(_Arg, __v));
}
#if __cplusplus >= 201103L
template<typename _Key, typename _Val, typename _KeyOfValue,
typename _Compare, typename _Alloc>
typename _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::iterator
_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::
_M_insert_node(_Base_ptr __x, _Base_ptr __p, _Link_type __z)
{
bool __insert_left = (__x != 0 || __p == _M_end()
|| _M_impl._M_key_compare(_S_key(__z),
_S_key(__p)));
_Rb_tree_insert_and_rebalance(__insert_left, __z, __p,
this->_M_impl._M_header);
++_M_impl._M_node_count;
return iterator(__z);
}
template<typename _Key, typename _Val, typename _KeyOfValue,
typename _Compare, typename _Alloc>
typename _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::iterator
_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::
_M_insert_lower_node(_Base_ptr __p, _Link_type __z)
{
bool __insert_left = (__p == _M_end()
|| !_M_impl._M_key_compare(_S_key(__p),
_S_key(__z)));
_Rb_tree_insert_and_rebalance(__insert_left, __z, __p,
this->_M_impl._M_header);
++_M_impl._M_node_count;
return iterator(__z);
}
template<typename _Key, typename _Val, typename _KeyOfValue,
typename _Compare, typename _Alloc>
typename _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::iterator
_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::
_M_insert_equal_lower_node(_Link_type __z)
{
_Link_type __x = _M_begin();
_Base_ptr __y = _M_end();
while (__x != 0)
{
__y = __x;
__x = !_M_impl._M_key_compare(_S_key(__x), _S_key(__z)) ?
_S_left(__x) : _S_right(__x);
}
return _M_insert_lower_node(__y, __z);
}
template<typename _Key, typename _Val, typename _KeyOfValue,
typename _Compare, typename _Alloc>
template<typename... _Args>
pair<typename _Rb_tree<_Key, _Val, _KeyOfValue,
_Compare, _Alloc>::iterator, bool>
_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::
_M_emplace_unique(_Args&&... __args)
{
_Link_type __z = _M_create_node(std::forward<_Args>(__args)...);
__try
{
typedef pair<iterator, bool> _Res;
auto __res = _M_get_insert_unique_pos(_S_key(__z));
if (__res.second)
return _Res(_M_insert_node(__res.first, __res.second, __z), true);
_M_drop_node(__z);
return _Res(iterator(__res.first), false);
}
__catch(...)
{
_M_drop_node(__z);
__throw_exception_again;
}
}
template<typename _Key, typename _Val, typename _KeyOfValue,
typename _Compare, typename _Alloc>
template<typename... _Args>
typename _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::iterator
_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::
_M_emplace_equal(_Args&&... __args)
{
_Link_type __z = _M_create_node(std::forward<_Args>(__args)...);
__try
{
auto __res = _M_get_insert_equal_pos(_S_key(__z));
return _M_insert_node(__res.first, __res.second, __z);
}
__catch(...)
{
_M_drop_node(__z);
__throw_exception_again;
}
}
template<typename _Key, typename _Val, typename _KeyOfValue,
typename _Compare, typename _Alloc>
template<typename... _Args>
typename _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::iterator
_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::
_M_emplace_hint_unique(const_iterator __pos, _Args&&... __args)
{
_Link_type __z = _M_create_node(std::forward<_Args>(__args)...);
__try
{
auto __res = _M_get_insert_hint_unique_pos(__pos, _S_key(__z));
if (__res.second)
return _M_insert_node(__res.first, __res.second, __z);
_M_drop_node(__z);
return iterator(__res.first);
}
__catch(...)
{
_M_drop_node(__z);
__throw_exception_again;
}
}
template<typename _Key, typename _Val, typename _KeyOfValue,
typename _Compare, typename _Alloc>
template<typename... _Args>
typename _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::iterator
_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::
_M_emplace_hint_equal(const_iterator __pos, _Args&&... __args)
{
_Link_type __z = _M_create_node(std::forward<_Args>(__args)...);
__try
{
auto __res = _M_get_insert_hint_equal_pos(__pos, _S_key(__z));
if (__res.second)
return _M_insert_node(__res.first, __res.second, __z);
return _M_insert_equal_lower_node(__z);
}
__catch(...)
{
_M_drop_node(__z);
__throw_exception_again;
}
}
#endif
template<typename _Key, typename _Val, typename _KeyOfValue,
typename _Compare, typename _Alloc>
void
_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::
_M_erase_aux(const_iterator __position)
{
_Link_type __y =
static_cast<_Link_type>(_Rb_tree_rebalance_for_erase
(const_cast<_Base_ptr>(__position._M_node),
this->_M_impl._M_header));
_M_drop_node(__y);
--_M_impl._M_node_count;
}
template<typename _Key, typename _Val, typename _KeyOfValue,
typename _Compare, typename _Alloc>
void
_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::
_M_erase_aux(const_iterator __first, const_iterator __last)
{
if (__first == begin() && __last == end())
clear();
else
while (__first != __last)
_M_erase_aux(__first++);
}
template<typename _Key, typename _Val, typename _KeyOfValue,
typename _Compare, typename _Alloc>
typename _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::size_type
_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::
erase(const _Key& __x)
{
pair<iterator, iterator> __p = equal_range(__x);
const size_type __old_size = size();
_M_erase_aux(__p.first, __p.second);
return __old_size - size();
}
template<typename _Key, typename _Val, typename _KeyOfValue,
typename _Compare, typename _Alloc>
typename _Rb_tree<_Key, _Val, _KeyOfValue,
_Compare, _Alloc>::iterator
_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::
find(const _Key& __k)
{
iterator __j = _M_lower_bound(_M_begin(), _M_end(), __k);
return (__j == end()
|| _M_impl._M_key_compare(__k,
_S_key(__j._M_node))) ? end() : __j;
}
template<typename _Key, typename _Val, typename _KeyOfValue,
typename _Compare, typename _Alloc>
typename _Rb_tree<_Key, _Val, _KeyOfValue,
_Compare, _Alloc>::const_iterator
_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::
find(const _Key& __k) const
{
const_iterator __j = _M_lower_bound(_M_begin(), _M_end(), __k);
return (__j == end()
|| _M_impl._M_key_compare(__k,
_S_key(__j._M_node))) ? end() : __j;
}
template<typename _Key, typename _Val, typename _KeyOfValue,
typename _Compare, typename _Alloc>
typename _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::size_type
_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::
count(const _Key& __k) const
{
pair<const_iterator, const_iterator> __p = equal_range(__k);
const size_type __n = std::distance(__p.first, __p.second);
return __n;
}
_GLIBCXX_PURE unsigned int
_Rb_tree_black_count(const _Rb_tree_node_base* __node,
const _Rb_tree_node_base* __root) throw ();
template<typename _Key, typename _Val, typename _KeyOfValue,
typename _Compare, typename _Alloc>
bool
_Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>::__rb_verify() const
{
if (_M_impl._M_node_count == 0 || begin() == end())
return _M_impl._M_node_count == 0 && begin() == end()
&& this->_M_impl._M_header._M_left == _M_end()
&& this->_M_impl._M_header._M_right == _M_end();
unsigned int __len = _Rb_tree_black_count(_M_leftmost(), _M_root());
for (const_iterator __it = begin(); __it != end(); ++__it)
{
_Const_Link_type __x = static_cast<_Const_Link_type>(__it._M_node);
_Const_Link_type __L = _S_left(__x);
_Const_Link_type __R = _S_right(__x);
if (__x->_M_color == _S_red)
if ((__L && __L->_M_color == _S_red)
|| (__R && __R->_M_color == _S_red))
return false;
if (__L && _M_impl._M_key_compare(_S_key(__x), _S_key(__L)))
return false;
if (__R && _M_impl._M_key_compare(_S_key(__R), _S_key(__x)))
return false;
if (!__L && !__R && _Rb_tree_black_count(__x, _M_root()) != __len)
return false;
}
if (_M_leftmost() != _Rb_tree_node_base::_S_minimum(_M_root()))
return false;
if (_M_rightmost() != _Rb_tree_node_base::_S_maximum(_M_root()))
return false;
return true;
}
#if __cplusplus > 201402L
// Allow access to internals of compatible _Rb_tree specializations.
template<typename _Key, typename _Val, typename _Sel, typename _Cmp1,
typename _Alloc, typename _Cmp2>
struct _Rb_tree_merge_helper<_Rb_tree<_Key, _Val, _Sel, _Cmp1, _Alloc>,
_Cmp2>
{
private:
friend class _Rb_tree<_Key, _Val, _Sel, _Cmp1, _Alloc>;
static auto&
_S_get_impl(_Rb_tree<_Key, _Val, _Sel, _Cmp2, _Alloc>& __tree)
{ return __tree._M_impl; }
};
#endif // C++17
_GLIBCXX_END_NAMESPACE_VERSION
} // namespace
#endif